Wu Liyun, Wu Qilong, Han Yun, Zhang Dongdong, Zhang Rongrong, Song Nan, Fang Yiqing, Liu Haodong, Wang Mingyue, Chen Jun, Du Aijun, Huang KeKe, Yao Xiangdong
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2500, Australia.
J Am Chem Soc. 2025 May 28;147(21):18033-18043. doi: 10.1021/jacs.5c03703. Epub 2025 May 16.
Disrupting the charge distribution equilibrium in catalysts is an effective strategy for the polarization and cleavage of small molecules during the electrocatalytic process. To achieve effective C-C bond cleavage in multicarbon molecules, such as glycerol, integrating the advantages of defect sites while creating spatially asymmetric sites that modulate the local electronic perturbations is both promising and challenging. In this study, spatially asymmetric defect pairs were engineered by partially refilling sulfur atoms into spinel CuCoO with a high oxygen vacancy density (H-S). These oxygen defect-refilled S pairs (Vo-S) enhance the local charge transfer, reduce the energy barrier for glycerol adsorption, and create thermodynamically favorable conditions for the second C-C bond cleavage, whereas the high density of oxygen vacancies further amplifies the local electronic perturbations. Exploiting the spatial effects of asymmetric defect sites, H-S demonstrated superior performance compared to H without Vo refilling, achieving Faradaic efficiencies (FE) of 98.5% and 75.3% at 1.36 V vs RHE for formic acid in the glycerol oxidation reaction (GOR), respectively. Significantly, this strategy also promotes C-C bond cleavage during the electrooxidation of ethylene glycol and glucose, further confirming its broad applicability in activating C-C bonds in polyol substrates. This study elucidates the role of the spatial effects of localized asymmetric defect sites in the GOR process, providing new insights for the design of novel electrocatalysts aimed at promoting C-C bond cleavage in polyol molecules.
破坏催化剂中的电荷分布平衡是电催化过程中实现小分子极化和裂解的有效策略。为了在多碳分子(如甘油)中实现有效的C-C键裂解,在整合缺陷位点优势的同时创建能够调节局部电子扰动的空间不对称位点,既充满希望又具有挑战性。在本研究中,通过将硫原子部分重新填充到具有高氧空位密度的尖晶石CuCoO中(H-S),设计出了空间不对称缺陷对。这些氧缺陷填充的S对(Vo-S)增强了局部电荷转移,降低了甘油吸附的能垒,并为第二次C-C键裂解创造了热力学有利条件,而高氧空位密度进一步放大了局部电子扰动。利用不对称缺陷位点的空间效应,与未填充Vo的H相比,H-S表现出优异的性能,在甘油氧化反应(GOR)中,相对于可逆氢电极(RHE),在1.36 V时甲酸的法拉第效率(FE)分别达到98.5%和75.3%。值得注意的是,该策略还促进了乙二醇和葡萄糖电氧化过程中的C-C键裂解,进一步证实了其在活化多元醇底物中C-C键方面的广泛适用性。本研究阐明了局部不对称缺陷位点的空间效应在GOR过程中的作用,为设计旨在促进多元醇分子中C-C键裂解的新型电催化剂提供了新的见解。