Suppr超能文献

用于评估睡眠呼吸暂停综合征的夜间长期心电图算法的稳健性能:一项初步研究。

Robust performances of a nocturnal long-term ECG algorithm for the evaluation of sleep apnea syndrome: A pilot study.

作者信息

Guyot Pauline, Eveilleau Morgane, Bastogne Thierry, Ayav Carole, Carpentier Nicolas, Chenuel Bruno

机构信息

NOVIGA, Nancy, France.

CRAN UMR 7039, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France.

出版信息

PLoS One. 2025 May 16;20(5):e0318622. doi: 10.1371/journal.pone.0318622. eCollection 2025.

Abstract

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is one of the most common sleep disorders affecting nearly one billion of the global adult population, making it a major public health issue. Even if in-lab polysomnography (PSG) remains the gold standard to diagnose OSAHS, there is a growing interest to develop new solutions with more convenient at home devices enhanced with AI-based algorithms for the detection of sleep apnea. This retrospective study aimed to assess the performances of a new method based on nocturnal long-term electrocardiogram signal to detect apneas and hypopneas, in patients who performed attended in-lab PSG. After assessing the quality of the ECG signal, the new method automatically detected apneas and hypopneas using dedicated machine learning algorithm. The agreement between the new ECG-based detection method and the standard interpretation of PSG by a sleep clinician was determined in a blind manner. Eighty-five exams were included into the study with a mean bias between the proposed method and the scorer of 3.5 apneas-hypopneas/hour (/h) (95% CI -48.1 to 55.1). At a threshold of 15/h, sensibility and specificity were 93.3% and 66.7% respectively, and positive and negative predictive values were 87.5% and 80%, respectively. The proposed method using nocturnal long-term electrocardiogram signals showed very high performances to detect apneas and hypopneas. Its implementation in a simple ECG-based device would offer a promising opportunity for preliminary evaluation of patients suspected or at-risk of OSAHS.

摘要

阻塞性睡眠呼吸暂停低通气综合征(OSAHS)是最常见的睡眠障碍之一,影响着全球近10亿成年人,使其成为一个重大的公共卫生问题。即使实验室多导睡眠图(PSG)仍然是诊断OSAHS的金标准,但人们越来越有兴趣开发新的解决方案,利用基于人工智能算法的更便捷家用设备来检测睡眠呼吸暂停。这项回顾性研究旨在评估一种基于夜间长期心电图信号检测呼吸暂停和低通气的新方法在接受实验室PSG检查患者中的性能。在评估心电图信号质量后,新方法使用专用机器学习算法自动检测呼吸暂停和低通气。以盲法确定基于心电图的新检测方法与睡眠临床医生对PSG的标准解读之间的一致性。85项检查纳入研究,该方法与评分者之间的平均偏差为每小时3.5次呼吸暂停低通气(/h)(95%可信区间-48.1至55.1)。在每小时15次的阈值下,敏感性和特异性分别为93.3%和66.7%,阳性和阴性预测值分别为87.5%和80%。所提出的使用夜间长期心电图信号的方法在检测呼吸暂停和低通气方面表现出非常高的性能。在基于简单心电图的设备中实施该方法将为疑似或有OSAHS风险的患者提供一个有前景的初步评估机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fc5/12083785/3c54016f571a/pone.0318622.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验