Maestre-Reyna Manuel, Hosokawa Yuhei, Wang Po-Hsun, Saft Martin, Caramello Nicolas, Engilberge Sylvain, Franz-Badur Sophie, Gusti Ngurah Putu Eka Putra, Nakamura Mai, Wu Wen-Jin, Wu Hsiang-Yi, Lee Cheng-Chung, Huang Wei-Cheng, Huang Kai-Fa, Chang Yao-Kai, Yang Cheng-Han, Fong Meng-Iao, Lin Wei-Ting, Yang Kai-Chun, Ban Yuki, Imura Tomoki, Kazuoka Atsuo, Tanida Eisho, Owada Shigeki, Joti Yasumasa, Tanaka Rie, Tanaka Tomoyuki, Kang Jungmin, Luo Fangjia, Tono Kensuke, Kiontke Stephan, Korf Lukas, Umena Yasufumi, Tosha Takehiko, Bessho Yoshitaka, Nango Eriko, Iwata So, Royant Antoine, Tsai Ming-Daw, Yamamoto Junpei, Essen Lars-Oliver
Department of Chemistry, National Taiwan University, 1Roosevelt Rd. Sec. 4, Taipei 106, Taiwan.
Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan.
Sci Adv. 2025 May 16;11(20):eadu7247. doi: 10.1126/sciadv.adu7247.
Animal-like cryptochromes are photoreceptors that control circadian rhythm and signaling in many eukaryotes. Transient photoreduction of the cryptochrome flavin chromophore initiated signaling via a poorly understood mechanism. By serial femtosecond crystallography (SFX), we show that the photoreduction mechanism of cryptochrome involves three loci [carboxyl-terminal region, a transient protonation pathway, and flavin adenine dinucleotide (FAD)-binding site] acting in unison to accomplish three effects: radical pair stabilization, protonation of FAD radical, and formation of the signaling state. Using 19 time-resolved SFX snapshots between 10 nanoseconds and 233 milliseconds, we found that light-driven FAD/tyrosyl-373 radical pair (RP) formation primes α22 unfolding. Electron transfer-dependent protonation of aspartate-321 by tyrosine-373 is the epicenter of unfolding by disrupting salt bridges between α22 and the photolyase homology region. Before helix unfolding, another pathway opens transiently for FAD protonation and RP stabilization. This link between RP formation and conformational changes provides a structural basis for signaling by animal-like cryptochromes.
类动物隐花色素是一种光感受器,可控制许多真核生物的昼夜节律和信号传导。隐花色素黄素发色团的瞬时光还原通过一种尚未完全了解的机制启动信号传导。通过串行飞秒晶体学(SFX),我们表明隐花色素的光还原机制涉及三个位点[羧基末端区域、一条瞬态质子化途径和黄素腺嘌呤二核苷酸(FAD)结合位点]协同作用,以实现三种效应:自由基对稳定、FAD自由基质子化和信号状态形成。利用10纳秒至233毫秒之间的19个时间分辨SFX快照,我们发现光驱动的FAD/酪氨酰-373自由基对(RP)形成引发α22展开。酪氨酸-373对天冬氨酸-321的电子转移依赖性质子化是通过破坏α22与光解酶同源区域之间的盐桥而展开的中心。在螺旋展开之前,另一条途径会短暂打开以进行FAD质子化和RP稳定。RP形成与构象变化之间的这种联系为类动物隐花色素的信号传导提供了结构基础。