Institut für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany.
Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany.
J Am Chem Soc. 2023 May 31;145(21):11566-11578. doi: 10.1021/jacs.3c00442. Epub 2023 May 17.
The primary step in the mechanism by which migratory birds sense the Earth's magnetic field is thought to be the light-induced formation of long-lived magnetically sensitive radical pairs within cryptochrome flavoproteins located in the birds' retinas. Blue-light absorption by the non-covalently bound flavin chromophore triggers sequential electron transfers along a chain of four tryptophan residues toward the photoexcited flavin. The recently demonstrated ability to express cryptochrome 4a from the night-migratory European robin (), Cry4a, and to replace each of the tryptophan residues by a redox-inactive phenylalanine offers the prospect of exploring the roles of the four tryptophans. Here, we use ultrafast transient absorption spectroscopy to compare wild type Cry4a and four mutants having a phenylalanine at different positions in the chain. We find that each of the three tryptophan residues closest to the flavin adds a distinct relaxation component (time constants: 0.5, 30, and 150 ps) in the transient absorption data. The dynamics of the mutant containing a phenylalanine at the fourth position, furthest from the flavin, are very similar to those of wild type Cry4a, except for a reduced concentration of long-lived radical pairs. The experimental results are evaluated and discussed in the framework of real-time quantum mechanical/molecular mechanical electron transfer simulations based on the density functional-based tight binding approach. This comparison between simulation results and experimental measurements provides a detailed microscopic insight into the sequential electron transfers along the tryptophan chain. Our results offer a route to the study of spin transport and dynamical spin correlations in flavoprotein radical pairs.
候鸟感知地球磁场的机制的第一步被认为是光诱导位于鸟类视网膜中的隐色体黄素蛋白中长寿命磁性敏感自由基对的形成。非共价结合的黄素发色团吸收蓝光会触发沿着四个色氨酸残基链的电子转移,朝向光激发的黄素。最近从夜间迁徙的欧洲知更鸟()中表达隐色体 4a(Cry4a)的能力,并将每个色氨酸残基替换为氧化还原非活性的苯丙氨酸,为探索四个色氨酸的作用提供了前景。在这里,我们使用超快瞬态吸收光谱来比较野生型 Cry4a 和在链中具有苯丙氨酸的四个突变体。我们发现,靠近黄素的三个色氨酸残基中的每一个都在瞬态吸收数据中添加了一个独特的弛豫分量(时间常数:0.5、30 和 150 ps)。在突变体中,位于第四位的苯丙氨酸距离黄素最远,其动力学与野生型 Cry4a 非常相似,只是长寿命自由基对的浓度降低。实验结果在基于密度泛函的紧束缚方法的实时量子力学/分子力学电子转移模拟的框架内进行了评估和讨论。这种模拟结果与实验测量之间的比较为沿色氨酸链的顺序电子转移提供了详细的微观见解。我们的结果为研究黄素蛋白自由基对中的自旋输运和动态自旋相关提供了一种途径。