Zhan Yongheng, Chen Nan, Feng Chuanping, Dai Tianjiao, Gao Hang, Yuan Yuan, Hu Weiwu, Dong Hailiang
School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
J Hazard Mater. 2025 Aug 15;494:138585. doi: 10.1016/j.jhazmat.2025.138585. Epub 2025 May 12.
The deployment of sulfur-based autotrophic bioremediation for in situ groundwater remediation faces hurdles due to electron competition among electron acceptors, impacting contaminant removal efficiency and causing pH instability. Notably, the sulfur-based bioreduction of Cr(VI) [Cr(VI)-SAR] exemplifies gaps in our comprehension of electron competition dynamics with inorganic carbon (IC), and its subsequent influence on pH. Herein, we established a Cr(VI)-SAR system interfaced with diverse IC species, providing definitive insights into electron transfer mechanisms through rigorous multi-biocycle analysis and thermodynamically consistent half-reaction calculations. Through quantification of electron transfer pathways, we derived reaction equations for Cr(VI) reduction in conjunction with various IC species. Furthermore, metagenomics were used to quantify functional enzymes and identify diverse electron transport patterns alongside IC fixation pathways. Notably, the enrichment of genes associated with electron shuttles and conductive pili expands the paradigm of extracellular electron transfer, while the Wood-Ljungdahl pathway streamlines microbial metabolic proliferation with reduced energy expenditure. Quantitative analysis of these functional genes offers a plausible mechanism underlying the observed shifts in electron competition between IC and Cr(VI). This research marks an advancement in the Cr(VI)-SAR foundational theory, with a particular focus on the dynamics of electron competition, contributing to a deeper understanding of this environmentally significant process.
基于硫的自养生物修复技术用于原位地下水修复时,由于电子受体之间的电子竞争,面临诸多障碍,这会影响污染物去除效率并导致pH值不稳定。值得注意的是,基于硫的Cr(VI)生物还原作用[Cr(VI)-SAR]体现了我们对其与无机碳(IC)之间电子竞争动态及其对pH值后续影响理解上的差距。在此,我们建立了一个与多种IC物种相关联的Cr(VI)-SAR系统,通过严格的多生物循环分析和热力学一致的半反应计算,为电子转移机制提供了明确的见解。通过量化电子转移途径,我们推导了Cr(VI)与各种IC物种还原反应的方程式。此外,利用宏基因组学量化功能酶,并确定与IC固定途径一起的各种电子传输模式。值得注意的是,与电子穿梭体和导电菌毛相关基因的富集扩展了细胞外电子转移的范例,而伍德-Ljungdahl途径则以减少的能量消耗简化了微生物代谢增殖。对这些功能基因的定量分析为观察到的IC和Cr(VI)之间电子竞争变化提供了一种合理的机制。这项研究标志着Cr(VI)-SAR基础理论的进步,特别关注电子竞争动态,有助于更深入地理解这一具有环境意义的过程。