Legault Marc-André, Hartford Jason, Arsenault Benoît J, Yang Archer Y, Pineau Joelle
Department of Computer Science, McGill University, Montreal, QC, Canada; Mila, Montreal, QC, Canada; Faculté de pharmacie, Université de Montréal, Montreal, QC, Canada; Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC, Canada.
Valence Labs, Montreal, QC, Canada.
Am J Hum Genet. 2025 Jun 5;112(6):1344-1362. doi: 10.1016/j.ajhg.2025.04.010. Epub 2025 May 15.
Mendelian randomization (MR) enables the estimation of causal effects while controlling for unmeasured confounding factors. However, traditional MR's reliance on strong parametric assumptions can introduce bias if these are violated. We describe a machine learning MR estimator named quantile instrumental variable (Quantile IV) that achieves a low estimation error in a wide range of plausible MR scenarios. Quantile IV is distinctive in its ability to estimate nonlinear and heterogeneous causal effects and offers a flexible approach for subgroup analysis. Applying quantile IV, we investigate the impact of circulating sclerostin levels on heel bone mineral density, osteoporosis, and cardiovascular outcomes. Employing various MR estimators and colocalization techniques, our analysis reveals that a genetically predicted reduction in sclerostin levels significantly increases heel bone mineral density and reduces the risk of osteoporosis while showing no discernible effect on ischemic cardiovascular diseases. As a second application, we estimated the effect of increases in low-density lipoprotein cholesterol and waist-to-hip ratio on ischemic cardiovascular diseases using this well-known association as a positive control analysis. Quantile IV contributes to the advancement of MR methodology, and the selected applications demonstrate the applicability of our estimator in various MR contexts.
孟德尔随机化(MR)能够在控制未测量的混杂因素的同时估计因果效应。然而,如果违反了传统MR对强参数假设的依赖,可能会引入偏差。我们描述了一种名为分位数工具变量(Quantile IV)的机器学习MR估计器,它在广泛的合理MR场景中实现了低估计误差。Quantile IV的独特之处在于它能够估计非线性和异质性因果效应,并为亚组分析提供了一种灵活的方法。应用分位数IV,我们研究了循环中硬化素水平对足跟骨矿物质密度、骨质疏松症和心血管结局的影响。通过使用各种MR估计器和共定位技术,我们的分析表明,基因预测的硬化素水平降低显著增加了足跟骨矿物质密度并降低了骨质疏松症的风险,同时对缺血性心血管疾病没有明显影响。作为第二个应用,我们使用这种众所周知的关联作为阳性对照分析,估计了低密度脂蛋白胆固醇和腰臀比升高对缺血性心血管疾病的影响。分位数IV有助于推进MR方法,所选应用证明了我们的估计器在各种MR背景下的适用性。