Suppr超能文献

饮食摄入孟德尔随机化:工具选择及稳健推断方法的评估与发展

Dietary Intake Mendelian Randomization: Assessment and Development of Methods for Instrument Selection and Robust Inference.

作者信息

Sutton Kristen J, Gervis Julie, Jatoi Moomal, Hwang Liang-Dar, Hendricks Audrey, Ghosh Debashis, Westerman Kenneth, Cole Joanne B

机构信息

Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.

Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA.

出版信息

medRxiv. 2025 Jun 27:2025.06.26.25330002. doi: 10.1101/2025.06.26.25330002.

Abstract

BACKGROUND

Mendelian randomization (MR) uses genetic instruments (GI) to infer causality between exposures, like dietary intake, and health outcomes. Almost all MR of dietary intake use the full set of genome-wide significant (GWS) variants in the GI, and therefore, causal estimates are likely biased by variants that act indirectly on diet.

OBJECTIVE

First, we performed an assessment of the diet MR literature to evaluate the applications and approaches common in the field. Second, using conventional two-sample MR techniques with GWS variants, we evaluated whether MR could detect expected associations between six diet-health relationships supported by existing nutrition science literature. Third, we developed and tested methods for refining the GI using filtering and mediation-based approaches.

METHODS

Studies that performed MR of foods or beverages on any health outcome were identified in PubMed. We recorded how the GI was created, what dietary intake traits were studied, how the exclusion restriction assumption was evaluated, and what sensitivity tests were performed. We tested if conventional MR methods could detect established diet-health relationships by selecting a biomarker and disease outcome for each dietary trait (six positive controls total). This included oily fish intake on triglycerides (TG) and cardiovascular disease (CVD), alcohol intake on alanine aminotransferase (ALT) and liver cirrhosis, and white vs whole grain or brown bread on LDL cholesterol (LDL-C) and CVD. To refine the GI to better estimate the direct effect of diet by removing or accounting for the indirect effects of confounders, we tested two phenome-wide association study (PheWAS) based GI filtering approaches and a mediation approach via multivariable MR (MVMR). Causal inferences were estimated by the inverse variance weighted (IVW) and weighted median (WM) estimators and by MR-CAUSE.

RESULTS

There is a strong and rapidly expanding interest in applying MR to dietary intake exposures (178 studies identified with 76 published in 2024). Existing studies showed a wide range of methodological rigor, especially with respect to GI specificity, which raised concerns whether MR using GWS GIs can adequately evaluate diet-health relationships. In empirical testing, conventional two-sample MR methods on GWS GIs only identified the relationships between oily fish on TG and white vs whole grain or brown bread on LDL-C using the WM estimator, whereas no relationships were identified by the IVW estimator. Filtering the GI improved the ability to detect the expectation for diet-biomarker pairs (IVW, oily fish on TG: β=-0.12 [95% CI -0.18 to -0.054]; IVW, white vs whole grain or brown bread on LDL-C: β = 0.11 [95% CI 0.058 to 0.16]) but not diet-disease pairs. MR-CAUSE identified the only diet-disease association - white vs. whole grain or brown bread on CVD (γ=0.17 [95% credible interval, 0.09 to 0.25]). Furthermore, MR-CAUSE found that many diet-health relationships were impacted by confounding. We evaluated which traits contributed to confounding via the PheWAS results and found that body composition traits were the most prevalent confounders. The PheWAS output was used to prioritize traits for MVMR and rescued the expected direct effect of alcohol on ALT (β= 0.028 [95% CI 0.017 to 0.039]).

CONCLUSION

MR studies of diet's causal role in health have flooded the literature; however, our inconsistent associations with positive and negative controls using multiple tests and filtering methods signal a need for caution. More thoughtful curation of the GI is critical to reduce confounding due to health and environmental factors when evaluating the causal effect of diet on health.

摘要

背景

孟德尔随机化(MR)使用遗传工具(GI)来推断饮食摄入等暴露因素与健康结果之间的因果关系。几乎所有饮食摄入的MR研究都使用GI中全基因组显著(GWS)变异的完整集合,因此,因果估计可能会受到间接影响饮食的变异的偏差。

目的

首先,我们对饮食MR文献进行了评估,以评价该领域常见的应用和方法。其次,使用具有GWS变异的传统双样本MR技术,我们评估了MR是否能够检测现有营养科学文献支持的六种饮食与健康关系之间的预期关联。第三,我们开发并测试了使用过滤和基于中介的方法来优化GI的方法。

方法

在PubMed中识别对任何健康结果进行食物或饮料MR研究的文献。我们记录了GI是如何创建的、研究了哪些饮食摄入特征、如何评估排除限制假设以及进行了哪些敏感性测试。我们通过为每个饮食特征选择一个生物标志物和疾病结果(总共六个阳性对照)来测试传统MR方法是否能够检测既定的饮食与健康关系。这包括油性鱼类摄入与甘油三酯(TG)和心血管疾病(CVD)、酒精摄入与丙氨酸转氨酶(ALT)和肝硬化以及白面包与全麦面包或黑面包与低密度脂蛋白胆固醇(LDL-C)和CVD之间的关系。为了通过去除或考虑混杂因素的间接影响来优化GI以更好地估计饮食的直接影响,我们测试了两种基于全表型关联研究(PheWAS)的GI过滤方法以及一种通过多变量MR(MVMR)的中介方法。因果推断通过逆方差加权(IVW)和加权中位数(WM)估计器以及MR-CAUSE进行估计。

结果

将MR应用于饮食摄入暴露的研究兴趣浓厚且迅速增长(共识别出178项研究,其中76项于2024年发表)。现有研究显示出广泛的方法严谨性,尤其是在GI特异性方面,这引发了对使用GWS GIs的MR能否充分评估饮食与健康关系的担忧。在实证测试中,基于GWS GIs的传统双样本MR方法仅使用WM估计器识别出油性鱼类与TG之间以及白面包与全麦面包或黑面包与LDL-C之间的关系,而IVW估计器未识别出任何关系。过滤GI提高了检测饮食与生物标志物对预期关系的能力(IVW,油性鱼类与TG:β=-0.12 [95% CI -0.18至-0.054];IVW,白面包与全麦面包或黑面包与LDL-C:β = 0.11 [95% CI 0.058至0.16]),但未提高检测饮食与疾病对预期关系的能力。MR-CAUSE识别出唯一的饮食与疾病关联——白面包与全麦面包或黑面包与CVD(γ=0.17 [95%可信区间,0.09至0.25])。此外,MR-CAUSE发现许多饮食与健康关系受到混杂因素影响。我们通过PheWAS结果评估了哪些特征导致混杂,发现身体组成特征是最普遍的混杂因素。PheWAS输出结果用于确定MVMR的特征优先级,并挽救了酒精对ALT的预期直接影响(β= 0.028 [95% CI 0.017至0.039])。

结论

关于饮食在健康中因果作用的MR研究充斥着文献;然而,我们使用多种测试和过滤方法对阳性和阴性对照的不一致关联表明需要谨慎。在评估饮食对健康的因果效应时,更谨慎地筛选GI对于减少健康和环境因素导致的混杂至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2679/12262755/bbc89d2ebd5f/nihpp-2025.06.26.25330002v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验