Aliotta Eric, Jeong Jeho, Paudyal Ramesh, Grkovski Milan, Diplas Bill, Han James, Hatzoglou Vaios, Aristophanous Michalis, Riaz Nadeem, Schöder Heiko, Lee Nancy Y, Shukla-Dave Amita, Deasy Joseph O
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
Phys Med Biol. 2025 May 27;70(11). doi: 10.1088/1361-6560/add9de.
To predict radiotherapy treatment response for head and neck cancer (HNC) using multimodality imaging and personalized radiobiological modeling.A mechanistic radiobiological model was combined with multi-modality imaging data from diffusion weighted-magnetic resonance imaging and positron emission tomography scans with [F]Fluorodeoxyglucose (FDG) and [F]Fluoromisonidazole (FMISO) tracers to develop personalized treatment response models for human papilloma virus associated HNC patients undergoing chemo-radiotherapy. Models were initialized to incorporate patient-specific imaging and updated to reflect longitudinal measurements of nodal gross tumor volume throughout treatment. Prediction accuracy was assessed based on mean absolute error (MAE) of weekly volume predictions and in predicting locoregional recurrence (LRR) following treatment.Personalized modeling based on pretreatment imaging significantly improved longitudinal volume prediction accuracy and correlation with measurement compared with a generic population model (MAE = 23.4 ± 10.0% vs 24.9 ± 9.0%,= 0.002 on paired-test,= 0.82 vs 0.72). Adding volume measurements from weeks 1 and 2 further improved prediction accuracy for subsequent weeks (MAE = 12.5 ± 8.1%, 10.7 ± 9.9%). When incorporating feedback with longitudinal measurements, penalizing large deviations from pretreatment model parameters using a variational regularization method was necessary to maintain model stability. Model-predicted volumes based on baseline + week-1 information significantly improved LRR prediction compared with week-1 volume data alone (area under the curve, AUC = 0.83 vs 0.77,= 0.03) and was similar to prediction using week-3 volume data (AUC = 0.83 vs 0.85,= non-significant).The proposed approach, which integrates clinical imaging and radiobiological principles, could be a basis to guide pretreatment prescription personalization as well as on-treatment adaptations.
利用多模态成像和个性化放射生物学模型预测头颈癌(HNC)的放射治疗反应。将一个机械放射生物学模型与来自扩散加权磁共振成像以及正电子发射断层扫描的多模态成像数据相结合,这些扫描使用了[F]氟脱氧葡萄糖(FDG)和[F]氟米索硝唑(FMISO)示踪剂,以开发针对接受放化疗的人乳头瘤病毒相关HNC患者的个性化治疗反应模型。模型初始化时纳入患者特异性成像,并进行更新以反映整个治疗过程中淋巴结大体肿瘤体积的纵向测量。基于每周体积预测的平均绝对误差(MAE)以及治疗后局部区域复发(LRR)的预测来评估预测准确性。与通用人群模型相比,基于治疗前成像的个性化建模显著提高了纵向体积预测准确性以及与测量值的相关性(配对检验中MAE = 23.4 ± 10.0% 对 24.9 ± 9.0%,P = 0.002,r = 0.82对0.72)。加入第1周和第2周的体积测量进一步提高了后续几周的预测准确性(MAE = 12.5 ± 8.1%,10.7 ± 9.9%)。当纳入纵向测量的反馈时,使用变分正则化方法惩罚与治疗前模型参数的大偏差对于维持模型稳定性是必要的。与仅使用第1周体积数据相比,基于基线+第1周信息的模型预测体积显著改善了LRR预测(曲线下面积,AUC = 0.83对0.77,P = 0.03),并且与使用第3周体积数据的预测相似(AUC = 0.83对0.85, P = 无显著差异)。所提出的整合临床成像和放射生物学原理的方法,可作为指导治疗前处方个性化以及治疗期间调整的基础。