Suppr超能文献

基于机器学习的多模态放射组学和转录组学模型用于预测食管癌的放疗敏感性和预后。

Machine learning-based multimodal radiomics and transcriptomics models for predicting radiotherapy sensitivity and prognosis in esophageal cancer.

作者信息

Ye Chengyu, Zhang Hao, Chi Zhou, Xu Zhina, Cai Yujie, Xu Yajing, Tong Xiangmin

机构信息

The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, PR China.

The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China.

出版信息

J Biol Chem. 2025 May 15;301(7):110242. doi: 10.1016/j.jbc.2025.110242.

Abstract

Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.

摘要

放射治疗在食管癌治疗中起着关键作用,但个体反应差异显著,影响患者预后。本研究整合机器学习驱动的多模态放射组学和转录组学,以开发食管癌放射治疗敏感性和预后的预测模型。我们将SEResNet101深度学习模型应用于来自UCSC Xena和TCGA数据库的成像和转录组数据,鉴定出与预后相关的基因,如STUB1、PEX12和HEXIM2。使用套索回归和Cox分析,我们构建了一个预后风险模型,该模型可根据生存概率准确地对患者进行分层。值得注意的是,E3泛素连接酶STUB1通过促进关键致癌蛋白SRC的泛素化和降解来增强放射治疗敏感性。体外和体内实验证实,STUB1过表达或SRC沉默可显著改善食管癌模型中的放射治疗反应。这些发现突出了多模态数据整合对个体化放射治疗计划的预测能力,并强调STUB1作为增强食管癌放射治疗疗效的有前景的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ed/12221354/e0d324aa9ead/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验