Burgio Giulio, St-Onge Guillaume, Hébert-Dufresne Laurent
Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain.
Vermont Complex Systems Institute, University of Vermont, Burlington, VT, USA.
Nat Commun. 2025 May 17;16(1):4589. doi: 10.1038/s41467-025-59777-0.
People organize in groups and contagions spread across them. A simple stochastic process, yet complex to model due to dynamical correlations within and between groups. Moreover, groups can evolve if agents join or leave in response to contagions. To address the lack of analytical models that account for dynamical correlations and adaptation in groups, we introduce the method of generalized approximate master equations. We first analyze how nonlinear contagions differ when driven by group-level or individual-level dynamics. We then study the characteristic levels of group activity that best describe the stochastic process and that optimize agents' ability to adapt to it. Naturally lending itself to study adaptive hypergraphs, our method reveals how group structure unlocks new dynamical regimes and enables distinct suitable adaptation strategies. Our approach offers a highly accurate model of binary-state dynamics on hypergraphs, advances our understanding of contagion processes, and opens the study of adaptive group-structured systems.
人们以群体形式组织起来,传染病在群体间传播。这是一个简单的随机过程,但由于群体内部和群体之间的动态相关性,对其进行建模很复杂。此外,如果个体因传染病而加入或离开,群体可能会发生演变。为了解决缺乏考虑群体中动态相关性和适应性的分析模型的问题,我们引入了广义近似主方程方法。我们首先分析非线性传染病在由群体层面或个体层面动态驱动时的差异。然后,我们研究最能描述随机过程并优化个体适应能力的群体活动特征水平。我们的方法自然适用于研究自适应超图,它揭示了群体结构如何开启新的动态机制并实现不同的合适适应策略。我们的方法提供了一个关于超图上二态动力学的高精度模型,推进了我们对传染病传播过程的理解,并开启了对自适应群体结构系统的研究。