Landry Nicholas W, Thompson William, Hébert-Dufresne Laurent, Young Jean-Gabriel
Vermont Complex Systems Center, <a href="https://ror.org/0155zta11">University of Vermont</a>, Burlington, Vermont 05405, USA.
, <a href="https://ror.org/0155zta11">University of Vermont</a>, Burlington, Vermont 05405, USA.
Phys Rev E. 2024 Oct;110(4):L042301. doi: 10.1103/PhysRevE.110.L042301.
Network scientists often use complex dynamic processes to describe network contagions, but tools for fitting contagion models typically assume simple dynamics. Here, we address this gap by developing a nonparametric method to reconstruct a network and dynamics from a series of node states, using a model that breaks the dichotomy between simple pairwise and complex neighborhood-based contagions. We then show that a network is more easily reconstructed when observed through the lens of complex contagions if it is dense or the dynamic saturates, and that simple contagions are better otherwise.
网络科学家经常使用复杂的动态过程来描述网络传播,但用于拟合传播模型的工具通常假设动态过程简单。在这里,我们通过开发一种非参数方法来填补这一空白,该方法使用一个打破简单成对传播和基于复杂邻域传播二分法的模型,从一系列节点状态重建网络和动态过程。然后我们表明,如果网络密集或动态过程饱和,那么从复杂传播的角度观察时,网络更容易重建;否则简单传播效果更好。