Suppr超能文献

网约车司机碰撞伤害严重程度:一项在中国开展的问卷调查研究

Crash injury severity for ride-hailing drivers: a questionnaire study in China.

作者信息

Zhang Yan, Liu Shiyuan

机构信息

School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, 610011, China.

School of Transportation Engineering, Chang'an University, Xi'an, 710018, China.

出版信息

Sci Rep. 2025 May 17;15(1):17203. doi: 10.1038/s41598-025-01469-2.

Abstract

The development of ride-hailing service has also led to an increase in the frequency of traffic accidents. The present study investigated the causes and accident severity for the ride-hailing accidents attributed to drivers-related factors in the context of China. From an online, self-reported survey of 1356 ride-hailing drivers across the country, we collected data about the drivers' demographic characteristics, working conditions, fatigue, risky driving behaviors and accident records between 2021 and 2023. We turned the data into insights through a two-step approach: using a Random Forest (RF) model to identify the most significant factors influencing accident severity, followed by building a Bayesian Network (BN) model to analyze the relationships between the identified factors and accident severity. With 16 top factors according to the RF model, results from the BN model showed that the main risk factors differ between different levels of accident severity. Among all the factors, nine proved to be directly related to accident severity, mostly involving drowsiness, using smartphones in inappropriate situations and risky driving behaviors; the drivers' demographic and working conditions otherwise influence accident severity in indirect ways. The findings from this study are useful for proposing more targeted policies to mitigate the accident severity among ride-hailing drivers.

摘要

网约车服务的发展也导致了交通事故发生率的上升。本研究在中国背景下调查了与司机相关因素导致的网约车事故的原因及事故严重程度。通过对全国1356名网约车司机进行在线自填式调查,我们收集了2021年至2023年间司机的人口统计学特征、工作条件、疲劳状况、危险驾驶行为及事故记录。我们通过两步法将数据转化为见解:首先使用随机森林(RF)模型识别影响事故严重程度的最重要因素,然后构建贝叶斯网络(BN)模型来分析已识别因素与事故严重程度之间的关系。根据RF模型得出的16个主要因素,BN模型的结果表明,不同事故严重程度水平下的主要风险因素有所不同。在所有因素中,有九个因素被证明与事故严重程度直接相关,主要涉及困倦、在不适当情况下使用智能手机以及危险驾驶行为;司机的人口统计学特征和工作条件则以间接方式影响事故严重程度。本研究结果有助于提出更具针对性的政策,以减轻网约车司机的事故严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6364/12085703/28b473cde831/41598_2025_1469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验