Suppr超能文献

贝宁南部拟除虫菊酯抗性病媒地区10岁以下儿童疟疾发病率的时空变化

Spatial and temporal variation of malaria incidence in children under 10 years in a pyrethroid-resistant vector area in southern Benin.

作者信息

Dangbenon Edouard, Atchadé Mintodê Nicodème, Akogbéto Martin C, Hounkonnou Mahouton N, Assongba Landry, Akpovi Hilaire, Kulkarni Manisha A, Protopopoff Natacha, Cook Jackie, Accrombessi Manfred

机构信息

Centre de Recherche Entomologique de Cotonou, Cotonou, Benin.

Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.

出版信息

Malar J. 2025 May 18;24(1):157. doi: 10.1186/s12936-025-05353-2.

Abstract

BACKGROUND

Spatial and temporal identification of malaria-endemic areas is a key component of vector-borne disease control. Strategies to target the most vulnerable populations, the periods of high transmission and the most affected geographical areas, should make vector-borne disease control and prevention programmes more cost-effective. The present study focuses on the spatial and temporal dynamics of malaria cases and the exogenous factors influencing the transmission in an area with pyrethroid-resistant mosquito vector populations.

METHODS

A prospective cohort study of 1806 children under 10 years of age was conducted over 20 months to assess the risk of malaria incidence in the Cove-Zagnanado-Ouinhi (CoZO) health zone located in southern Benin. Childhood malaria data were used to identify malaria hotspots according to months of follow-up using spatial scanning methods based on the Kulldoff algorithm. Stability scores were calculated by season to assess incidence heterogeneity. Incidence values by month were aggregated with meteorological data; and demographic data were merged to detect cross-correlation between incidence and meteorological variables. Generalized equation estimators were chosen for their ability to handle intra-group correlation, ensuring robust and interpretable results despite the complexity of the data to identify factors explaining the spatio-temporal heterogeneity of malaria incidence in the CoZO health zone.

RESULTS

Malaria incidence ranged from 1.41 (95% IC 0.96-2.08) to 13.91 (95% IC 12.22-15.84) cases per 100 child-months. Spatial heterogeneity in malaria transmission hotspots was observed over the study period, with relative risks ranging from 1.59 (p-value = 0.032) to 16.24 (p-value = 0.002). There was a significant negative association (correlation coefficient = - 0.56) between malaria incidence and temperature; and a slightly positive association (correlation coefficient = 0.58) between malaria incidence and rainfall. A significant association between malaria incidence with average house altitude (adjusted incidence rate ratio [aIRR] 1 (95% IC 0.99-1) P < 0.001), soil type aIRR 0.54 (0.39-0.75) p < 0.001 and temperature (incidence rate ratio [IRR] 0.69 (0.66-0.73) p < 0.001).

CONCLUSION

This study uses innovative technologies such as remote sensing and geographic information systems (GIS) to analyse the environmental, meteorological and geographical factors influencing malaria transmission, thereby identifying high-risk areas and associated factors. It demonstrates that these tools improve the accuracy of control strategies, while highlighting the crucial role of the environment and human behaviour, paving the way for more targeted interventions against malaria and other vector-borne diseases.

摘要

背景

疟疾流行地区的时空识别是病媒传播疾病控制的关键组成部分。针对最脆弱人群、高传播期和受影响最严重地理区域的策略,应能使病媒传播疾病的控制和预防计划更具成本效益。本研究聚焦于疟疾病例的时空动态以及影响拟除虫菊酯抗性蚊媒种群地区传播的外部因素。

方法

对1806名10岁以下儿童进行了为期20个月的前瞻性队列研究,以评估位于贝宁南部的科韦 - 扎尼亚纳多 - 温希(CoZO)卫生区疟疾发病风险。利用儿童疟疾数据,采用基于库尔托夫算法的空间扫描方法,根据随访月份确定疟疾热点地区。按季节计算稳定性得分,以评估发病率的异质性。将每月发病率值与气象数据汇总;并合并人口数据,以检测发病率与气象变量之间的交叉相关性。选择广义方程估计器是因其能够处理组内相关性,尽管数据复杂,但仍能确保得出稳健且可解释的结果,以确定解释CoZO卫生区疟疾发病率时空异质性的因素。

结果

疟疾发病率为每100儿童月1.41(95%置信区间0.96 - 2.08)至13.91(95%置信区间12.22 - 15.84)例。在研究期间观察到疟疾传播热点地区存在空间异质性,相对风险范围为1.59(p值 = 0.032)至16.24(p值 = 0.002)。疟疾发病率与温度之间存在显著负相关(相关系数 = - 0.56);疟疾发病率与降雨量之间存在轻微正相关(相关系数 = 0.58)。疟疾发病率与平均房屋海拔(调整发病率比[aIRR] 1(95%置信区间0.99 - 1)P < 0.001)、土壤类型aIRR 0.54(0.39 - 0.75)p < 0.001以及温度(发病率比[IRR] 0.69(0.66 - 0.73)p < 0.001)之间存在显著关联。

结论

本研究使用遥感和地理信息系统(GIS)等创新技术分析影响疟疾传播的环境、气象和地理因素,从而确定高风险地区及相关因素。研究表明,这些工具提高了控制策略的准确性,同时突出了环境和人类行为的关键作用,为更有针对性地干预疟疾和其他病媒传播疾病铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cad/12087215/446042beed4b/12936_2025_5353_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验