Muñoz-Mármol Rafael, Raj Saurav, Russo Mattia, Serra Gianluca, Zhao Hao, Bassi Giacomo, Lucotti Andrea, Scotognella Francesco, Cerullo Giulio, Lanzani Guglielmo, Tommasini Matteo, Maiuri Margherita, Narita Akimitsu, Paternò Giuseppe Maria
Instituto Universitario de Materiales, University of Alicante, San Vicente del Raspeig, 03690, Spain.
Department of Physics, Politecnico di Milano, Milano, 20133, Italy.
Small Methods. 2025 May 19:e2500419. doi: 10.1002/smtd.202500419.
Coherent molecular vibrations determine many molecular properties like intersystem crossing or intramolecular charge transfer, holding potential for developing systems with vibrationally controlled electronic dynamics and reactivity. Research efforts have been focused mainly on localized vibrational modes, leaving collective vibrational modes widely unexplored despite their prominent role in driving molecular dynamics. Besides, the lower intensity associated to collective vibrational modes and their low frequency makes their study a demanding task. In this sense, nanographenes are promising materials that can be synthesized with tailored shapes and sizes-including edge substituents-, offering a great platform for studying collective vibrational modes. Here, femtosecond impulsive vibrational spectroscopy, Raman spectroscopy, and density functional theory calculations are combined to investigate for the first time low-frequency vibrational motions in two dibenzo[hi,st]ovalene (DBOV) nanographenes. The systematic study of mesityl-substituted DBOV (DBOV-Mes) and its chloro-functionalized derivative (Cl-DBOV-Mes) demonstrates that collective vibrational modes supported by DBOV derivatives can be altered with edge substitution, while optoelectronic properties are preserved. The multidisciplinary approach followed in this work sets the stage for studies on collective vibrational modes in nanographenes and other π-conjugated systems.
相干分子振动决定了许多分子性质,如系间窜越或分子内电荷转移,这为开发具有振动控制电子动力学和反应性的系统提供了潜力。研究工作主要集中在局域振动模式上,尽管集体振动模式在驱动分子动力学中起着重要作用,但它们仍未得到广泛探索。此外,与集体振动模式相关的较低强度及其低频使得对其进行研究成为一项艰巨的任务。从这个意义上说,纳米石墨烯是很有前途的材料,可以合成具有定制形状和尺寸(包括边缘取代基)的纳米石墨烯,为研究集体振动模式提供了一个很好的平台。在这里,飞秒脉冲振动光谱、拉曼光谱和密度泛函理论计算相结合,首次研究了两种二苯并[hi,st]戊搭烯(DBOV)纳米石墨烯中的低频振动运动。对均三甲苯基取代的DBOV(DBOV-Mes)及其氯官能化衍生物(Cl-DBOV-Mes)的系统研究表明,DBOV衍生物支持的集体振动模式可以通过边缘取代而改变,同时光电性质得以保留。这项工作中采用的多学科方法为研究纳米石墨烯和其他π共轭体系中的集体振动模式奠定了基础。