Dief Essam Mohamed, Li Tiexin, Ponce Ingrid, Darwish Nadim
School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, 9170022, Chile.
Small. 2025 Jul;21(29):e2412438. doi: 10.1002/smll.202412438. Epub 2025 May 19.
Molecular electronics offers significant potential for the development of miniaturized and tunable electronic devices, with silicon (Si) remaining a cornerstone of modern semiconductor technology. This study presents a method for constructing tunable molecular circuits on Si electrodes using UV-controlled hydrosilylation reaction, enabling precise control over molecular orientation and bonding. When hydrogen-terminated Si surfaces are exposed to UV light in a solution of 9-decyne-1-ol, hydroxyl (OH) groups form covalent Si─O─C bonds, while in the absence of UV light, alkyne groups instead react to form Si─C bonds. This tunability allows precise positioning of oxygen atoms near the Si surface, thereby enhancing charge transfer in metal-molecule-semiconductor junctions and at electrified semiconductor-electrolyte interfaces. Conducting atomic force microscopy (C-AFM) measurements reveal that Pt─Si junctions exhibit Schottky diode characteristics, whereas Pt-molecule-Si junctions display Ohmic behaviour. Junctions formed via Si─O bonds demonstrate significantly lower resistance and at least a two-fold higher electron transfer rate constant (k) compared to those formed with Si─C bonds, indicating superior charge transfer when oxygen atoms are positioned near the Si electrode. These findings suggest that incorporating oxygen-containing molecules reduces the space-charge region, thereby facilitating current flow at the Si-metal and Si-electrolyte electrified interfaces.
分子电子学为小型化和可调节电子设备的发展提供了巨大潜力,硅(Si)仍然是现代半导体技术的基石。本研究提出了一种利用紫外线控制的硅氢化反应在硅电极上构建可调节分子电路的方法,能够精确控制分子取向和键合。当氢终止的硅表面在9-癸炔-1-醇溶液中暴露于紫外线时,羟基(OH)基团形成共价Si─O─C键,而在没有紫外线的情况下,炔基则反应形成Si─C键。这种可调性允许在硅表面附近精确地定位氧原子,从而增强金属-分子-半导体结以及带电半导体-电解质界面中的电荷转移。导电原子力显微镜(C-AFM)测量表明,Pt─Si结表现出肖特基二极管特性,而Pt-分子-Si结表现出欧姆行为。与通过Si─C键形成的结相比,通过Si─O键形成的结显示出显著更低的电阻和至少两倍高的电子转移速率常数(k),这表明当氧原子位于硅电极附近时电荷转移更优。这些发现表明,引入含氧分子会减小空间电荷区,从而促进在硅-金属和硅-电解质带电界面处的电流流动。