Heriyanto Aghnia Dinan Maulani, Okamoto Naofumi, Cho Yongyoon, Abe Ryo, Okamoto Chihiro, Pandey Manish, Benten Hiroaki, Nakamura Masakazu
Laboratory for Organic Electronics, Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.
Department of Electronics and Communication Engineering, Indian Institute of Technology Bhilai, Durg 491002, India.
ACS Omega. 2025 Apr 30;10(18):18371-18379. doi: 10.1021/acsomega.4c10388. eCollection 2025 May 13.
Carbon nanotube (CNT) yarn is a promising element for flexible/wearable thermoelectric (TE) generators due to its high electrical conductivity and structural flexibility. However, one of the challenges is controlling the n-type doping and its air stability, which are essential for fabricating p-n-combined π-type cells and optimizing their performance. An obstacle to doping control is the unintentional p-type doping caused by oxygen in the atmosphere. This paper demonstrates a simple and effective way to fabricate weakly doped n-type CNT yarns using a nonionic oligomer surfactant, polyoxyethylene (50) stearyl ether, and postannealing. Although the as-prepared CNT yarn showed p-type characteristics in air as frequently reported, surfactant-adsorbed yarn became relatively stable n-type after annealing at 200-300 °C. However, annealing at 400-500 °C turned the CNT yarn into p-type again. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the surfactant physisorbed on CNT is positively charged to be multivalent cations and acts as an n-type dopant after annealing at 200-300 °C. However, the surfactant is removed after annealing at 400-500 °C, and negatively charged oxygen in the carboxy group, chemisorbed on CNT, acts as a p-type dopant. These results imply that the polyoxyethylene (50) stearyl ether plays multiple roles in obtaining n-type CNT yarn: a surfactant to disperse CNTs in water, an electron donor to make CNTs n-type, and a protective cap against oxygen attack on the CNT.
碳纳米管(CNT)纱线因其高导电性和结构柔韧性,是用于柔性/可穿戴热电(TE)发电机的一种很有前景的材料。然而,挑战之一是控制n型掺杂及其空气稳定性,这对于制造p-n组合π型电池并优化其性能至关重要。掺杂控制的一个障碍是大气中的氧气导致的无意p型掺杂。本文展示了一种简单有效的方法,即使用非离子低聚物表面活性剂聚氧乙烯(50)硬脂基醚并进行后退火,来制备弱掺杂的n型CNT纱线。尽管如经常报道的那样,制备的CNT纱线在空气中表现出p型特性,但表面活性剂吸附的纱线在200-300°C退火后变成了相对稳定的n型。然而,在400-500°C退火会使CNT纱线再次变为p型。能量色散X射线光谱和X射线光电子能谱表明,物理吸附在CNT上的表面活性剂带正电成为多价阳离子,并在200-300°C退火后作为n型掺杂剂起作用。然而,在400-500°C退火后表面活性剂被去除,化学吸附在CNT上的羧基中的带负电的氧作为p型掺杂剂起作用。这些结果表明,聚氧乙烯(50)硬脂基醚在获得n型CNT纱线中起多种作用:一种将CNT分散在水中的表面活性剂、一种使CNT成为n型的电子供体以及一种防止氧气对CNT攻击的保护帽。