Oten Sena, Herr Sanjeev, Ambati Vardhaan, Sibih Youssef, Lu Katie, Kaur Jasleen, Hervey-Jumper Shawn L, Brang David
Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
medRxiv. 2025 May 8:2025.05.07.25327167. doi: 10.1101/2025.05.07.25327167.
Intraoperative electrocorticography (ECoG) plays a critical role in clinical care and neuroscience research, enabling precise mapping of functional cortex. However, localizing subdural electrodes in patients with brain tumors presents unique challenges due to altered neuroanatomy and the impracticality of acquiring extraoperative computed tomography (CT). To address this gap, we developed BrainTRACE, a novel MATLAB tool that combines magnetic resonance imaging (MRI), cortical vascular reconstructions, and intraoperative photography for accurate subdural electrode grid placement.
Preoperative MRI, cortical photography, and subdural electrode array data were recorded from patients with diffuse glioma and brain metastasis. BrainTRACE generated three-dimensional cortical surfaces, integrated vascular reconstructions, and enabled precise placement of electrode grids. Each electrode was placed based on cortical anatomy and vascular landmarks informed by intraoperative photographs. Novice and expert-level proficiency were quantified.
Expert users achieved high consistency and accuracy, with an intraclass correlation coefficient (ICC) of 0.934 and a mean deviation of 4.3 mm from consensus placements. Novice users demonstrated lower reliability (ICC = 0.399) and greater variability, averaging a 16.3 mm deviation from consensus. These findings highlight the non-trivial nature of intraoperative ECoG localization, which requires neuroanatomical expertise for successful grid placement.
BrainTRACE enables accurate localization of intraoperative ECoG electrodes in brain tumor patients. By integrating anatomical images, intraoperative photographs, and vascular mapping, the tool addresses challenges posed by tumor-induced artifacts. While requiring that users have cortical neuroanatomical expertise, BrainTRACE provides a practical tool for neurosurgical and neuroscience applications, including brain malignancy, epilepsy, and deep brain stimulation procedures. BrainTRACE is freely available to researchers (https://github.com/dbrang/BrainTRACE).
术中皮质脑电图(ECoG)在临床护理和神经科学研究中起着关键作用,能够精确绘制功能皮层图谱。然而,由于神经解剖结构改变以及获取术中计算机断层扫描(CT)不切实际,在脑肿瘤患者中定位硬膜下电极存在独特挑战。为填补这一空白,我们开发了BrainTRACE,这是一种新颖的MATLAB工具,它结合磁共振成像(MRI)、皮质血管重建和术中摄影,用于准确放置硬膜下电极网格。
记录弥漫性胶质瘤和脑转移瘤患者的术前MRI、皮质摄影和硬膜下电极阵列数据。BrainTRACE生成三维皮质表面,整合血管重建,并实现电极网格的精确放置。每个电极根据术中照片所示的皮质解剖结构和血管标志进行放置。对新手和专家水平的熟练度进行了量化。
专家用户实现了高度的一致性和准确性,组内相关系数(ICC)为0.934,与共识放置的平均偏差为4.3毫米。新手用户的可靠性较低(ICC = 0.399),变异性较大,与共识的平均偏差为16.3毫米。这些发现凸显了术中ECoG定位的复杂性,成功放置网格需要神经解剖学专业知识。
BrainTRACE能够在脑肿瘤患者中准确定位术中ECoG电极。通过整合解剖图像、术中照片和血管映射,该工具解决了肿瘤引起的伪影带来的挑战。虽然要求用户具备皮质神经解剖学专业知识,但BrainTRACE为神经外科和神经科学应用提供了一种实用工具,包括脑恶性肿瘤、癫痫和深部脑刺激手术。研究人员可免费获取BrainTRACE(https://github.com/dbrang/BrainTRACE)。