Suppr超能文献

用于识别乳腺癌的人工智能辅助扩散相关断层扫描技术

AI-assisted diffuse correlation tomography for identifying breast cancer.

作者信息

Zhang Ruizhi, Lu Jianju, Di Wenqi, Gui Zhiguo, Wan Chan Shun, Yang Fengbao, Shang Yu

机构信息

North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China.

Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China.

出版信息

J Biomed Opt. 2025 May;30(5):055001. doi: 10.1117/1.JBO.30.5.055001. Epub 2025 May 16.

Abstract

SIGNIFICANCE

Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses.

AIM

This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm.

APPROACH

The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models.

RESULTS

As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%.

CONCLUSIONS

The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks.

摘要

意义

扩散相关断层扫描(DCT)是一种用于无创测量乳腺微血管血流的新兴技术,然而,由于仪器设备、图像重建算法以及成像分析的适当方法等方面存在困难,其对乳腺良恶性病变进行分类的能力迄今尚未得到广泛验证。

目的

基于独特的源探测器阵列和图像重建算法构建了这种人工智能(AI)辅助的DCT仪器。

方法

从61名女性获取乳腺的DCT图像,并利用AI模型对乳腺病变进行分类。在此过程中,血流图像要么作为特征参数提取,要么作为AI模型的全局输入。

结果

作为DCT仪器的验证,从健康受试者的纵向监测中获得的血流图像证明了DCT测量的稳定性。对于患有乳腺疾病的患者,综合分析产生了一种AI辅助分类,在区分乳腺良恶性病变方面具有优异性能,准确率为97%。

结论

AI辅助的DCT反映了与松质骨诱导的高代谢需求相关的功能异常,从而显示出在乳腺癌早期诊断和及时治疗评估方面的巨大潜力,例如在肿瘤形成或微血管网络增殖之前。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/12083502/5a60de78bb75/JBO-030-055001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验