Zhang Menghao, Xue Minghao, Li Shuying, Zou Yun, Zhu Quing
Electrical and System Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA.
Biomedical Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA.
Biomed Opt Express. 2023 Mar 27;14(4):1636-1646. doi: 10.1364/BOE.486292. eCollection 2023 Apr 1.
Diffuse optical tomography (DOT) is a promising technique that provides functional information related to tumor angiogenesis. However, reconstructing the DOT function map of a breast lesion is an ill-posed and underdetermined inverse process. A co-registered ultrasound (US) system that provides structural information about the breast lesion can improve the localization and accuracy of DOT reconstruction. Additionally, the well-known US characteristics of benign and malignant breast lesions can further improve cancer diagnosis based on DOT alone. Inspired by a fusion model deep learning approach, we combined US features extracted by a modified VGG-11 network with images reconstructed from a DOT deep learning auto-encoder-based model to form a new neural network for breast cancer diagnosis. The combined neural network model was trained with simulation data and fine-tuned with clinical data: it achieved an AUC of 0.931 (95% CI: 0.919-0.943), superior to those achieved using US images alone (0.860) or DOT images alone (0.842).
扩散光学断层扫描(DOT)是一种很有前景的技术,可提供与肿瘤血管生成相关的功能信息。然而,重建乳腺病变的DOT功能图是一个不适定且欠定的逆过程。提供乳腺病变结构信息的共注册超声(US)系统可提高DOT重建的定位和准确性。此外,乳腺良恶性病变众所周知的US特征可进一步改善仅基于DOT的癌症诊断。受融合模型深度学习方法的启发,我们将经修改的VGG-11网络提取的US特征与基于DOT深度学习自动编码器模型重建的图像相结合,形成了一个用于乳腺癌诊断的新神经网络。该组合神经网络模型使用模拟数据进行训练,并使用临床数据进行微调:其曲线下面积(AUC)为0.931(95%置信区间:0.919 - 0.943),优于单独使用US图像(0.860)或单独使用DOT图像(0.842)所获得的AUC。