Usui Hiroyuki, Domi Yasuhiro, Sadamori Yuma, Tanaka Ryuto, Hoshi Takeo, Tanaka Toshiyuki, Sakaguchi Hiroki
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan.
Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan.
ACS Mater Au. 2025 Mar 18;5(3):558-568. doi: 10.1021/acsmaterialsau.5c00008. eCollection 2025 May 14.
We prepared rutile TiO particles doped with Ni, Al, Nb, and Ta by hydrothermal synthesis as anode materials for Na-ion batteries and investigated the effect of doping cation valence on the anode performance and the Na diffusion behavior. X-ray diffraction analyses confirmed the insertion and extraction of Na while maintaining the rutile structure. Among the various doped TiO electrodes, the Ni-doped TiO one exhibited the best anode performance with a high reversible capacity of 135 mA h g even at 50 (16.75 A g). This electrode showed a very long cycle life: the capacity of 225 mA h g could be attained even after 10,000 cycles. The first-principles calculation suggested the formation of impurity levels in the forbidden band of TiO by various cation dopings. Electrochemical impedance analyses revealed that the Ni-doped TiO electrode showed lower charge-transfer resistance ( ) compared with other cation-doped TiO electrodes. Measurements using the galvanostatic intermittent titration technique found that the Na diffusion coefficient ( ) of Ni-doped TiO has a higher value of 1.2 × 10 cm s compared with of 4.8 × 10 cm s in the case of undoped TiO. The first-principle calculation supported this result: the Ni doping could reduce the activation energy required for Na diffusion in rutile TiO. Therefore, we suggest that an easier migration of Na was promoted in the Ni-doped TiO, effectively enhancing the charge-discharge capacity and the cycle life. Although rutile TiO as an anode has had a difficult history, this study proved that impurity element doping such as Ni can transform it into a very attractive anode material.
我们通过水热合成法制备了掺杂镍、铝、铌和钽的金红石型二氧化钛颗粒作为钠离子电池的负极材料,并研究了掺杂阳离子价态对负极性能和钠扩散行为的影响。X射线衍射分析证实了钠的嵌入和脱嵌,同时保持了金红石结构。在各种掺杂的二氧化钛电极中,镍掺杂的二氧化钛电极表现出最佳的负极性能,即使在50(16.75 A g)时也具有135 mA h g的高可逆容量。该电极显示出非常长的循环寿命:即使在10000次循环后仍可达到225 mA h g的容量。第一性原理计算表明,各种阳离子掺杂会在二氧化钛的禁带中形成杂质能级。电化学阻抗分析表明,与其他阳离子掺杂的二氧化钛电极相比,镍掺杂的二氧化钛电极显示出更低的电荷转移电阻( )。使用恒电流间歇滴定技术进行的测量发现,镍掺杂的二氧化钛的钠扩散系数( )具有更高的值1.2×10 cm s,而未掺杂的二氧化钛的钠扩散系数为4.8×10 cm s。第一性原理计算支持了这一结果:镍掺杂可以降低金红石型二氧化钛中钠扩散所需的活化能。因此,我们认为镍掺杂的二氧化钛中促进了钠的更容易迁移,有效地提高了充放电容量和循环寿命。尽管金红石型二氧化钛作为负极材料有着艰难的发展历程,但这项研究证明,诸如镍等杂质元素的掺杂可以将其转化为极具吸引力的负极材料。