Wu Zhengzheng, Wang Can, Han Jiusong, Chen Xiaobing, Wu Jie, Cheng Bin, Wang Juan
Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, People's Republic of China.
Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou 510280, Guangdong, People's Republic of China.
Int J Med Sci. 2025 Apr 28;22(10):2470-2487. doi: 10.7150/ijms.112735. eCollection 2025.
Recent evidence suggests that the renin-angiotensin system (RAS) is involved in OSCC development. This study aimed to identify RAS-related gene (RASRG) biomarkers associated with OSCC prognosis through integrated bioinformatics analysis. First, we identified module genes by intersecting differentially expressed genes (DEGs) from the TCGA-OSCC dataset with RASRGs using weighted gene co-expression network analysis (WGCNA). Next, Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were utilized to construct an OSCC risk model. We also created a nomogram incorporating risk scores and relevant clinical variables. Subsequently, receiver operating characteristic (ROC) analysis, Kaplan-Meier (KM) curve analysis, Cox regression analysis, and in vitro experiments were performed to assess the accuracy of the prognostic risk model and nomogram. Furthermore, protein-protein interaction (PPI) network, immune infiltration analysis and functional enrichment analyses were employed to reveal OSCC-related pathogenic genes and underlying mechanisms. A novel OSCC risk model was established consisting of six key genes: , , , , , and . This six-gene signature effectively predicted the prognosis of patients with OSCC and served as a reliable independent prognostic parameter. Protein-protein interaction network analysis identified 5 hub genes and 13 miRNAs. Immune infiltration analysis indicated a possible association of the prognostic features of RASRGs with immunomodulation. In this study, we successfully constructed a risk model based on the six identified RAS-related DEGs as potential predictive biomarkers for OSCC.
近期证据表明,肾素-血管紧张素系统(RAS)参与口腔鳞状细胞癌(OSCC)的发展。本研究旨在通过综合生物信息学分析,鉴定与OSCC预后相关的RAS相关基因(RASRG)生物标志物。首先,我们使用加权基因共表达网络分析(WGCNA),通过将来自TCGA-OSCC数据集的差异表达基因(DEG)与RASRG进行交叉,来鉴定模块基因。接下来,利用Cox和最小绝对收缩与选择算子(LASSO)回归分析构建OSCC风险模型。我们还创建了一个包含风险评分和相关临床变量的列线图。随后,进行受试者工作特征(ROC)分析、Kaplan-Meier(KM)曲线分析、Cox回归分析和体外实验,以评估预后风险模型和列线图的准确性。此外,采用蛋白质-蛋白质相互作用(PPI)网络、免疫浸润分析和功能富集分析,以揭示OSCC相关的致病基因和潜在机制。建立了一个由六个关键基因组成的新型OSCC风险模型: 、 、 、 、 和 。这个六基因特征有效地预测了OSCC患者的预后,并作为一个可靠的独立预后参数。蛋白质-蛋白质相互作用网络分析确定了5个枢纽基因和13个miRNA。免疫浸润分析表明RASRG的预后特征与免疫调节可能存在关联。在本研究中,我们成功地构建了一个基于六个已鉴定的RAS相关DEG的风险模型,作为OSCC的潜在预测生物标志物。