Suppr超能文献

使用一系列对症状机制敏感的任务来识别临床上有精神病高风险的个体。

Identifying individuals at clinical high risk for psychosis using a battery of tasks sensitive to symptom mechanisms.

作者信息

Williams Trevor, Gold Jim, Waltz James, Schiffman Jason, Ellman Lauren, Strauss Gregory P, Walker Elaine, Woods Scott W, Powers Al, Kenney Joshua, Pappu Minerva, Corlett Philip, Tran Tanya, Silverstein Steven, Zinbarg Richard, Mittal Vijay

机构信息

Kent State University.

MPRC.

出版信息

Res Sq. 2025 May 8:rs.3.rs-5005564. doi: 10.21203/rs.3.rs-5005564/v1.

Abstract

The clinical high risk for psychosis (CHR-P) population is important for understanding disease progression and treatment; however, standard approaches to identifying CHR-P individuals are expensive and labor-intensive. Focusing on neurocognitive mechanisms that underlie individual psychosis symptoms (positive, negative, and disorganization) may improve screening and identification. The present study examines whether a behavioral task battery that assays symptom mechanisms can identify CHR-P individuals and predict risk severity. Participants ( = 621) were recruited from clinics and the community as part of the Computerized Assessment of Psychosis Risk (CAPR) consortium study. Structured clinical interviews, a dimensional risk calculator, and behavioral tasks were administered. Clinical interviews identified the following groups: (a) CHR-P ( = 273), (b) non-CHR-P individuals with limited psychosis like experiences (PLEs; = 120), (c) participants with mental disorders and no PLEs (CLN; = 82), and (d) healthy controls (HC; = 146). Multinomial logistic regression indicated that the task battery differentiated groups ( < .001), with utility for identifying CHR-P individuals (Sensitivity = .87, PPV = .51, NPV = .77), though with high false positives that varied based on comparison group (Specificity = .21-.43). Tasks also predicted psychosis risk calculator scores (Adjusted = .12), with the two unique predictors being positive symptom task variables associated with updating beliefs regarding environmental volatility. Overall, symptom mechanism tasks differentiated CHR-P individuals from control groups, suggesting their potential as novel screening tools. Using tasks to more efficiently identify CHR-P individuals (e.g., enrich samples), may lower barriers and identify individuals that may otherwise be missed.

摘要

临床精神病高危人群(CHR-P)对于理解疾病进展和治疗至关重要;然而,识别CHR-P个体的标准方法既昂贵又耗费人力。关注构成个体精神病症状(阳性、阴性和紊乱)基础的神经认知机制可能会改善筛查和识别。本研究考察了一组检测症状机制的行为任务能否识别CHR-P个体并预测风险严重程度。作为精神病风险计算机化评估(CAPR)联盟研究的一部分,从诊所和社区招募了参与者(n = 621)。进行了结构化临床访谈、维度风险计算器和行为任务。临床访谈确定了以下几组:(a)CHR-P(n = 273),(b)有有限精神病样体验(PLEs)的非CHR-P个体(n = 120),(c)患有精神障碍且无PLEs的参与者(CLN;n = 82),以及(d)健康对照(HC;n = 146)。多项逻辑回归表明,该任务组能够区分不同组(p <.001),对识别CHR-P个体有用(敏感性 =.87,阳性预测值 =.51,阴性预测值 =.77),尽管假阳性率较高,且因比较组而异(特异性 =.21 -.43)。任务还预测了精神病风险计算器得分(调整后R² =.12),两个独特的预测因素是与更新关于环境波动性信念相关的阳性症状任务变量。总体而言,症状机制任务能够区分CHR-P个体与对照组,表明它们作为新型筛查工具的潜力。使用任务更有效地识别CHR-P个体(例如,丰富样本),可能会降低障碍并识别那些否则可能被遗漏的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/295c/12083675/cb0324ac3aaa/nihpp-rs5005564v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验