Shi Yanan, Zhang Li-Li, Wang Chongyang, Sun Shaohui
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou, 450001, China.
Adv Sci (Weinh). 2025 Jul;12(27):e2502388. doi: 10.1002/advs.202502388. Epub 2025 May 19.
The electrocatalytic two-electron oxygen reduction reaction (2e ORR) presents an environmentally sustainable approach to produce hydrogen peroxide (HO). Heterostructures coupling non-noble transition metal oxides (TMOs) with carbon materials hold promise for 2e ORR, but face challenges in controlling morphology, phase composition, and active centers. In this study, a hierarchically porous tremella-like heterojunction characterized by ultrafine cubic FeO nanoparticles within the amorphous carbon (UFeO@HPAC) is obtained using the integrated platform of green Fe-based deep eutectic solvent via a two-step annealing process. UFeO@HPAC exhibits remarkable overall and intrinsic 2e ORR activity, delivering 96% HO selectivity and a turnover frequency (TOF) of 67.5 s. Notably, UFeO@HPAC possesses superior HO production capabilities, showing long-term stability of 100 h with a HO production rate of 8.1 g L h in flow-cell, while achieving various medical-grade HO concentrations (3.0-7.8 wt%). Additionally, integrating on-site HO production with electro-Fenton achieved rapid decomposition of contaminants. The unique heterostructure, with the synergistic effect of FeO and amorphous carbon, enhances electronic conductivity. Moreover, the electronic redistribution at the interface of the heterostructure triggers the thermodynamically favorable multiple active sites of Fe and C centers for the 2e ORR. This work offers a new perspective on transition metal-based materials for HO production.
电催化双电子氧还原反应(2e ORR)为生产过氧化氢(HO)提供了一种环境可持续的方法。将非贵金属过渡金属氧化物(TMOs)与碳材料耦合的异质结构有望实现2e ORR,但在控制形态、相组成和活性中心方面面临挑战。在本研究中,通过两步退火工艺,利用绿色铁基深共熔溶剂的集成平台,获得了一种具有层次多孔银耳状异质结,其特征是在无定形碳中含有超细立方FeO纳米颗粒(UFeO@HPAC)。UFeO@HPAC表现出显著的整体和本征2e ORR活性,过氧化氢选择性达96%,周转频率(TOF)为67.5 s⁻¹。值得注意的是,UFeO@HPAC具有卓越的过氧化氢生产能力,在流动池中以8.1 g L⁻¹ h⁻¹的过氧化氢产率显示出100小时的长期稳定性,同时实现了各种医疗级过氧化氢浓度(3.0 - 7.8 wt%)。此外,将现场过氧化氢生产与电芬顿相结合实现了污染物的快速分解。独特的异质结构,在FeO和无定形碳的协同作用下,提高了电子导电性。此外,异质结构界面处的电子重新分布触发了铁和碳中心在热力学上有利于2e ORR的多个活性位点。这项工作为用于过氧化氢生产的过渡金属基材料提供了新的视角。