Nielsen Brian Skriver, Larsen Brian Roland, Ghazal Afnan Bilal, Katz Adriana, Brennan K C, Karlish Steven J D, MacAulay Nanna
Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
Department of Molecular Biosciences, Weizmann Institute of Science, Rehovot, Israel.
Glia. 2025 Sep;73(9):1805-1816. doi: 10.1002/glia.70034. Epub 2025 May 19.
Neuronal activity in the central nervous system is associated with a [K] transient that is swiftly cleared from the extracellular space, predominantly by the Na/K-ATPase. The temporal contribution of the glial (α2β2) and the neuronal (α3β1) isoform complexes remains unresolved due to the lack of an isoform-specific inhibitor. The role of the two main brain isoform complexes in spreading depression (SD) also remains unresolved, but an SD-mediated increase in [K] may suppress Na/K-ATPase activity and thereby promote SD propagation. As demonstrated here, inhibitor assays of purified recombinant human and heterologously expressed rat Na/K-ATPase isoforms demonstrated significant selectivity for inhibition of α2β2 compared to α3β1 isoform complexes by a cyclobutyl perhydro-1,4-oxazepine derivative of digoxin (DcB). This phenomenon was utilized to demonstrate the temporal role of α2β2 and α3β1 in [K] clearance in electrically stimulated rat hippocampal slices, as monitored with ion-sensitive microelectrodes. The observations demonstrate a role of α2β2 in regulating the [K] during electrical stimulus of hippocampal slices, whereas α3β1 serves to restore [K] to baseline post-stimulus. SD can be triggered by elevated [K] but elevated [K] did not reduce the activity of the Na/K-ATPase or the glutamate transporters in hippocampal brain slices or upon heterologous expression of individual isoforms in Xenopus oocytes. Our results demonstrate the temporal contribution of the glial and neuronal Na/K-ATPase isoform complexes to clearance of [K] but do not support the concept that direct effects of elevated [K] on Na/K-ATPase activity or glutamate transport underlie SD propagation.
中枢神经系统中的神经元活动与一种[K]瞬变相关,该瞬变主要通过钠钾ATP酶迅速从细胞外空间清除。由于缺乏同工型特异性抑制剂,胶质细胞(α2β2)和神经元(α3β1)同工型复合物在时间上的作用仍未明确。两种主要脑同工型复合物在扩散性抑制(SD)中的作用也尚未明确,但SD介导的[K]升高可能会抑制钠钾ATP酶活性,从而促进SD传播。如本文所示,对纯化的重组人源和异源表达的大鼠钠钾ATP酶同工型进行抑制剂测定表明,地高辛的环丁基全氢-1,4-恶唑并氮杂卓衍生物(DcB)对α2β2同工型复合物的抑制作用比对α3β1同工型复合物具有显著的选择性。利用这一现象,通过离子敏感微电极监测,证明了α2β2和α3β1在电刺激大鼠海马切片中[K]清除过程中的时间作用。观察结果表明,α2β2在海马切片电刺激期间调节[K],而α3β1则在刺激后将[K]恢复到基线水平。SD可由升高的[K]触发,但升高的[K]并未降低海马脑切片中钠钾ATP酶或谷氨酸转运体的活性,也未降低非洲爪蟾卵母细胞中单个同工型异源表达时的活性。我们的结果证明了胶质细胞和神经元钠钾ATP酶同工型复合物在[K]清除中的时间作用,但不支持升高的[K]对钠钾ATP酶活性或谷氨酸转运的直接影响是SD传播基础的观点。