Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
Glia. 2020 Nov;68(11):2192-2211. doi: 10.1002/glia.23824. Epub 2020 Mar 17.
Neuronal signaling in the central nervous system (CNS) associates with release of K into the extracellular space resulting in transient increases in [K ] . This elevated K is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K ] elevation and glia cells thus act as K sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K absorption remain a point of debate. Passive distribution of K via Kir4.1-mediated spatial buffering of K has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K clearance from the extracellular space is sparse. The Na /K -ATPase, but not the Na /K /Cl cotransporter, NKCC1, shapes the activity-evoked K transient. The different isoform combinations of the Na /K -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K clearance. The glia cell swelling occurring with the K transient was long assumed to be directly associated with K uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K and extracellular space dynamics.
中枢神经系统 (CNS) 的神经元信号与 K 释放到细胞外空间有关,导致 [K ] 的短暂增加。这种升高的 K 迅速被清除,部分是通过邻近的神经胶质细胞摄取。这个过程与 [K ] 升高同时发生,因此神经胶质细胞在神经元活动期间充当 K 汇,而在脉冲结束时释放 K。控制这种神经胶质细胞 K 吸收的分子转运机制仍然存在争议。通过 Kir4.1 介导的 K 空间缓冲的被动 K 分布已成为神经胶质领域的首选,尽管证据表明这种离子通道对从细胞外空间清除 K 的定量贡献很少。Na / K -ATPase,但不是 Na / K / Cl 共转运体 NKCC1,塑造了活动诱发的 K 瞬变。在神经胶质细胞和神经元中表达的 Na / K -ATPase 的不同同工型组合具有不同的动力学特征,因此明显适应于它们对 K 清除的时间和定量贡献。随着 K 瞬变发生的神经胶质细胞肿胀长期以来被认为与 K 摄取和/或 AQP4 直接相关,尽管越来越多的证据表明并非如此。相反,碳酸氢盐和乳酸转运体的激活似乎通过活动诱发的碱性瞬变、K 介导的神经胶质去极化和代谢需求导致神经胶质细胞肿胀。这篇综述涵盖了过去半个世纪积累的关于支持活动诱发的 K 和细胞外空间动力学的分子机制的证据或缺乏证据。