Suppr超能文献

用于加速芳族污染物在氧化铜催化剂上降解的自激活非均相芬顿过程

Self-Activated Heterogeneous Fenton Process for Accelerated Degradation of Aromatic Pollutants over Copper Oxide Catalysts.

作者信息

Huang Mingjie, Liu Hong-Zhi, Huang Qing-Qing, Zhou Tao, Wu Xiaohui, Li Wen-Wei, Yu Han-Qing

机构信息

State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202508754. doi: 10.1002/anie.202508754. Epub 2025 May 26.

Abstract

Metal-based heterogeneous catalysts have been commonly adopted for Fenton-like oxidation of organic pollutants, but generally suffer from inadequate activity in practical water treatment applications due to surface passivation by accumulated pollutants and sluggish redox cycling of active metal. Here, we observed an unusual phenomenon of pollutant-induced activity enhancement for copper oxide (CuO) in HO activation and phenol degradation, which is in sharp contrast to considerable activity decay of FeO catalyst. The CuO was found to stabilize and activate phenol via ligand-to-metal charge transfer route, generating surface-bound phenoxyl radicals for further mediating the HO activation and enabling a rapid regeneration of low-valent Cu. Based on this principle, a Fe-Cu bimetal oxides catalyst was elaborated to further augment the catalyst-phenol interaction towards self-activated Fenton oxidation. The optimal catalyst achieved 14-time faster pollutant degradation rate and 2 order-of-magnitude higher HO utilization efficiency than the FeO control. It also demonstrated good adaptability to degradation of diverse substituted benzenes and maintained stable performance for treatment of real lake water during 100-day continuous operation. Our work implies that the catalyst-pollutant interaction may be rationally leveraged and modulated to create highly efficient and stable heterogeneous catalytic systems, thus further unlocking their potential for sustainable water purification application.

摘要

基于金属的非均相催化剂已被广泛用于有机污染物的类芬顿氧化,但由于累积污染物导致的表面钝化和活性金属的氧化还原循环缓慢,在实际水处理应用中通常活性不足。在此,我们观察到一种不寻常的现象,即污染物诱导氧化铜(CuO)在HO活化和苯酚降解中活性增强,这与FeO催化剂显著的活性衰减形成鲜明对比。发现CuO通过配体到金属的电荷转移途径稳定并活化苯酚,产生表面结合的苯氧基自由基以进一步介导HO活化并实现低价Cu的快速再生。基于这一原理,制备了一种Fe-Cu双金属氧化物催化剂,以进一步增强催化剂与苯酚的相互作用,实现自活化芬顿氧化。与FeO对照相比,最佳催化剂的污染物降解速率快14倍,HO利用效率高2个数量级。它还对多种取代苯的降解表现出良好的适应性,并在100天连续运行期间对实际湖水的处理保持稳定性能。我们的工作表明,可以合理利用和调节催化剂与污染物的相互作用,以创建高效稳定的非均相催化体系,从而进一步挖掘其在可持续水净化应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验