Lee Hye Jun, Kim Na Yeon, Kim Da Seul, Kim Youngbin, Kim Jung-Ha, Han Doug Hyun, Kim Sun Mi
Department of Family Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Republic of Korea.
PLoS One. 2025 May 19;20(5):e0324000. doi: 10.1371/journal.pone.0324000. eCollection 2025.
Obesity is a global public health concern, often co-occurring in patients with severe mental illnesses. The impact of psychotropic drugs-induced weight gain is augmenting the disease burden and healthcare expenditure. However, predictors of psychotropic drug-induced weight gain and the efficacy of anti-obesity drugs remain underexplored. This study aims to develop a machine learning algorithm to predict both psychotropic drugs-induced weight gain and metabolic changes, and the potential of anti-obesity drugs. We plan to enroll 300 patients with severe mental illnesses, including schizophrenia, bipolar disorder, and major depressive disorder. In Phase 1, the study will predict weight gain and metabolic changes after the psychotropic treatment. Data on demographics, lifestyle, medical history, psychological factors, anthropometrics, and laboratory results will be collected at baseline and re-evaluated 24 weeks post-treatment. Participants classified as obese (body mass index ≥ 25 kg/m²) or overweight (body mass index of 23-24.9 kg/m²) at the 24-week follow-up will proceed to Phase 2, which focuses on predicting the promise of anti-obesity drugs. The study participants will receive anti-obesity medications for 24 weeks, and the same variables from Phase 1 will be reassessed. A machine learning model will be developed to predict both psychotropic drug-induced weight gain and anti-obesity medications that will be effective. The algorithm will be tailored to each patient to guide clinicians in personalizing psychiatric and obesity treatment plans. The clinical trial is registered with the Clinical Research Information Service, part of the WHO International Clinical Trials Registry Platform (approval number: KCT0009769).
肥胖是一个全球性的公共卫生问题,常与严重精神疾病患者同时出现。精神药物引起的体重增加所产生的影响正在加重疾病负担和医疗保健支出。然而,精神药物引起体重增加的预测因素以及抗肥胖药物的疗效仍未得到充分研究。本研究旨在开发一种机器学习算法,以预测精神药物引起的体重增加和代谢变化,以及抗肥胖药物的潜力。我们计划招募300名患有严重精神疾病的患者,包括精神分裂症、双相情感障碍和重度抑郁症。在第一阶段,该研究将预测精神药物治疗后的体重增加和代谢变化。将在基线时收集人口统计学、生活方式、病史、心理因素、人体测量学和实验室检查结果等数据,并在治疗后24周重新评估。在24周随访时被归类为肥胖(体重指数≥25kg/m²)或超重(体重指数为23-24.9kg/m²)的参与者将进入第二阶段,该阶段重点预测抗肥胖药物的前景。研究参与者将接受24周的抗肥胖药物治疗,并重新评估第一阶段的相同变量。将开发一种机器学习模型,以预测精神药物引起的体重增加以及有效的抗肥胖药物。该算法将针对每个患者进行定制,以指导临床医生制定个性化的精神科和肥胖治疗计划。该临床试验已在世界卫生组织国际临床试验注册平台的一部分——临床研究信息服务中心注册(批准号:KCT0009769)。
Expert Opin Pharmacother. 2016-8
J Psychosoc Nurs Ment Health Serv. 2015-6
Aust N Z J Psychiatry. 2001-6
J Psychosoc Nurs Ment Health Serv. 2008-7
Br J Psychiatry. 1993-2
J Clin Psychiatry. 2015-11
BMJ. 2024-3-25
Obes Pillars. 2022-6-28
Life (Basel). 2023-8-31
Adolesc Health Med Ther. 2023-8-23
Psychopharmacology (Berl). 2023-4
Front Public Health. 2022