Suppr超能文献

激光氧化与长短期记忆的协同集成用于下一代人工嗅觉系统中的高级气味分类

Synergistic Integration of Laser Oxidation and Long Short-Term Memory for Advanced Odor Classification in Next-Generation Artificial Olfactory Systems.

作者信息

Kwon Hyeokjin, Park Jiho, Jang Hyun Woo, Lim Hyeongtae, Kim Sohee, Kim Samhwan, Jang Jae Eun, Kwon Hyuk-Jun, Choi Ji-Woong

机构信息

Department of Electrical Engineering and Computer Science, DGIST, Daegu 42988, Republic of Korea.

Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Republic of Korea.

出版信息

ACS Sens. 2025 Aug 22;10(8):5568-5578. doi: 10.1021/acssensors.5c00152. Epub 2025 May 19.

Abstract

Emulating and enhancing human olfactory capabilities, artificial olfactory technology provides adept detection of subtle odors, gases, and various chemical substances. Metal oxide semiconductors (MOSs) are ideal materials for next-generation artificial olfactory devices due to their outstanding gas sensing performance, characterized high sensitivity, high response speed, and robust stability, as well as their compatibility with microfabrication. For broader applications, developing a comprehensive database of diverse odorants is crucial, which necessitates expanding the types of MOS channels in artificial olfactory devices. This paper reports a laser-induced oxidation-based artificial olfactory device using a 7 × 3 sensor array composed of three metal oxides (SnO, ZnO, and WO). By analyzing the response pattern of various odorants using a deep neural network, the device achieved 95.2% accuracy in classifying eight single odor molecules. Additionally, it successfully deconvoluted the types and concentrations of two odor mixtures and classified ten types of wine with accuracies of 91.3% and 92.5%, respectively. Furthermore, this study identified the proper number and arrangement of sensors for next-generation e-nose development. Our innovative artificial olfactory system can be integrated into various fields, such as the aromatic industry and virtual reality, making it a beneficial technology for future artificial olfaction applications.

摘要

人工嗅觉技术模仿并增强了人类的嗅觉能力,能够熟练检测出微妙的气味、气体和各种化学物质。金属氧化物半导体(MOS)由于其出色的气敏性能,具有高灵敏度、高响应速度和强大稳定性,以及与微加工的兼容性,是下一代人工嗅觉设备的理想材料。为了实现更广泛的应用,开发一个包含各种气味剂的综合数据库至关重要,这就需要增加人工嗅觉设备中MOS通道的类型。本文报道了一种基于激光诱导氧化的人工嗅觉设备,它使用了由三种金属氧化物(SnO、ZnO和WO)组成的7×3传感器阵列。通过使用深度神经网络分析各种气味剂的响应模式,该设备在对八种单一气味分子进行分类时准确率达到了95.2%。此外,它成功地解卷积了两种气味混合物的类型和浓度,并分别以91.3%和92.5%的准确率对十种葡萄酒进行了分类。此外,本研究确定了下一代电子鼻开发中传感器的合适数量和排列方式。我们创新的人工嗅觉系统可以集成到各种领域,如香料工业和虚拟现实,使其成为未来人工嗅觉应用的一项有益技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验