Suppr超能文献

用于室温下增强化学电阻式氨气传感的封装锌共价有机框架

Zinc-encapsulating covalent organic frameworks for enhanced chemiresistive NH sensing at room temperature.

作者信息

Nallamalla Sujith Benarzee, Katari Naresh Kumar, Reddy A Jagan Mohan, Jonnalagadda Sreekantha Babu, Manabolu Surya Surendra Babu

机构信息

Department of Chemistry, GITAM University Hyderabad-502329 Telangana India

School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal P Bag X 54001 Durban 4000 South Africa.

出版信息

RSC Adv. 2025 May 19;15(21):16708-16723. doi: 10.1039/d5ra01430a. eCollection 2025 May 15.

Abstract

Ammonia (NH) is a hazardous gas used in industry, agriculture, and biomedical applications, and the development of efficient room-temperature and low-concentration ammonia detection sensors is essential. However, conventional sensors, including metal oxides, nanocomposites, and MOFs, require highly elevated temperatures (200-500 °C), leading to high energy consumption and less durability. To overcome these challenges, we developed functionalized zinc-encapsulated covalent organic frameworks (Zn@COFs) using a facile metal-doping approach. COFs doped with zinc have a modulated electronic environment, increased active sites, efficient charge transfer, and enhanced gas interactions. The incorporation of Zn into the COF frameworks was confirmed by IR, TEM-EDAX, C CP MAS NMR spectra (C[double bond, length as m-dash]O peak at ∼183 ppm, and imine C[double bond, length as m-dash]N peaks at ∼148 and ∼146 ppm) and XPS (C[double bond, length as m-dash]O peak at 527.84 eV, C[double bond, length as m-dash]N at 399.2 eV; Zn 2p peak at 1042 eV, and Zn 2p at 1019 eV). Among the synthesized frameworks, Zn@COF-3 exhibited exceptional NH sensing at a concentration of 1 ppm at room temperature, with a rapid response time (26 s) and recovery time (18 s), outperforming pristine COFs and Zn@COFs. This superior performance is attributed to its rich active sites (C[double bond, length as m-dash]O), high surface area (335 m g), porosity, strong NH adsorption energy (-282 kJ mol), and low energy gap (2.65 eV), as confirmed by DFT calculations. Additionally, Zn@COF-3 shows excellent selectivity and long-term stability over 30 days. This Zn@COF-based approach yields next-generation ammonia sensors, featuring energy-efficient, highly selective, and room-temperature chemiresistive sensors for industrial, environmental, and biomedical applications.

摘要

氨(NH₃)是一种用于工业、农业和生物医学应用的有害气体,开发高效的室温及低浓度氨检测传感器至关重要。然而,包括金属氧化物、纳米复合材料和金属有机框架(MOF)在内的传统传感器需要高温(200 - 500°C),导致高能耗且耐久性较差。为克服这些挑战,我们采用简便的金属掺杂方法开发了功能化的锌封装共价有机框架(Zn@COF)。掺杂锌的COF具有调制的电子环境、增加的活性位点、高效的电荷转移以及增强的气体相互作用。通过红外光谱(IR)、透射电子显微镜 - 能谱分析(TEM - EDAX)、¹³C交叉极化魔角旋转核磁共振光谱(¹³C CP MAS NMR光谱,羰基C═O峰在约183 ppm,亚胺C═N峰在约148和约146 ppm)以及X射线光电子能谱(XPS,羰基C═O峰在527.84 eV,C═N在399.2 eV;Zn 2p峰在1042 eV,Zn 2p在1019 eV)证实了锌已掺入COF框架中。在合成的框架中,Zn@COF - 3在室温下对1 ppm浓度的NH₃表现出优异的传感性能,响应时间迅速(26秒)且恢复时间短(18秒),优于原始COF和其他Zn@COF。这种卓越的性能归因于其丰富的活性位点(C═O)、高比表面积(335 m²/g)、孔隙率、强NH₃吸附能(-282 kJ/mol)以及低能隙(2.65 eV),这已通过密度泛函理论(DFT)计算得到证实。此外,Zn@COF - 3在30天内表现出优异的选择性和长期稳定性。这种基于Zn@COF的方法产生了下一代氨传感器,其为工业、环境和生物医学应用提供了节能、高选择性且室温工作的化学电阻传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b3/12087901/02b9d59530de/d5ra01430a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验