Loomba Prerana, Nallamalla Sujith Benarzee, Koppula Suresh, Katari Naresh Kumar, Manabolu Surya Surendra Babu
Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Telangana-502329 India
Department of Chemistry, Bhavan's Vivekananda College of Science, Humanities & Commerce, Sainikpuri Hyderabad Telangana India.
RSC Adv. 2025 Jul 22;15(32):26229-26239. doi: 10.1039/d5ra03634h. eCollection 2025 Jul 21.
This paper details the synthesis and characterization of zinc-doped covalent organic frameworks (Zn@DADE-Tp COF) for the highly sensitive and selective detection of acetylene (CH). The Schiff base condensation of 4,4'-diaminodiphenyl ether and 2,4,6-hydroxybenzene-1,3,5-tricarbaldehyde produced a porous framework, which was then functionalized with Zn ions to improve gas-sensing efficacy. The synthesized MCOFs were synthesized by incorporating Zn ions into COFs by a simple solution method. Structural characterization by XPS, PXRD, and SEM-EDAX validates the effective integration of Zn, whereas AFM indicates an elevated surface roughness of 137.32 nm in contrast to the pure COF, which measures 115.09 nm. The chemiresistive sensor demonstrated outstanding performance at ambient temperature, achieving a response of 1.41 at 150 ppm CH, swift response and recovery times (7.32 s/7.10 s), and a minimal detection limit of 10 ppm. The increased sensitivity is due to Zn coordination, which promotes electron transfer and enhances CH adsorption. In support of the enhanced sensing performance, DFT studies revealed a reduction in the HOMO-LUMO gap from 3.74 eV (pristine COF) to 2.64 eV after Zn-doped COF, and further to 2.59 eV upon CH adsorption. This, along with increased orbital delocalization and stronger electrostatic interaction at the Zn site, confirms improved charge transfer and validates the observed chemiresistive response. This study highlights the potential of metal-doped COFs (MCOFs) as advanced sensors for industrial safety and environmental monitoring.
本文详细介绍了用于高灵敏度和选择性检测乙炔(CH)的锌掺杂共价有机框架(Zn@DADE-Tp COF)的合成与表征。4,4'-二氨基二苯醚与2,4,6-羟基苯-1,3,5-三甲醛的席夫碱缩合反应生成了一种多孔框架,然后用锌离子对其进行功能化以提高气敏效率。通过简单的溶液法将锌离子掺入共价有机框架中来合成所制备的金属掺杂共价有机框架(MCOFs)。通过XPS、PXRD和SEM-EDAX进行的结构表征验证了锌的有效整合,而原子力显微镜(AFM)表明,与纯共价有机框架(其表面粗糙度为115.09 nm)相比,其表面粗糙度提高到了137.32 nm。该化学电阻传感器在环境温度下表现出优异的性能,在150 ppm的CH浓度下响应值为1.41,具有快速的响应和恢复时间(7.32秒/7.10秒),最低检测限为10 ppm。灵敏度的提高归因于锌配位,它促进了电子转移并增强了CH的吸附。为了支持增强的传感性能,密度泛函理论(DFT)研究表明,锌掺杂的共价有机框架使最高占据分子轨道(HOMO)与最低未占据分子轨道(LUMO)之间的能隙从3.74 eV(原始共价有机框架)降低到2.64 eV,在吸附CH后进一步降至2.59 eV。这与增加的轨道离域和锌位点处更强的静电相互作用一起,证实了电荷转移的改善,并验证了观察到的化学电阻响应。这项研究突出了金属掺杂共价有机框架(MCOFs)作为用于工业安全和环境监测的先进传感器的潜力。