Vasquez Isabella, Xue Ruiyang, Srivastava Indrajit
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA.
Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, USA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 May-Jun;17(3):e70015. doi: 10.1002/wnan.70015.
Surface-enhanced Raman scattering (SERS) is a transformative technique for molecular identification, offering exceptional sensitivity, signal specificity, and resistance to photobleaching, making it invaluable for disease diagnosis, monitoring, and spectroscopy-guided surgeries. Unlike traditional Raman spectroscopy, which relies on weak scattering signals, SERS amplifies Raman signals using plasmonic nanoparticles, enabling highly sensitive molecular detection. This technological advancement has led to the development of SERS nanotags with remarkable multiplexing capabilities for biosensing applications. Recent progress has expanded the use of SERS nanotags in bioimaging, theranostics, and more recently, liquid biopsy. The distinction between SERS and conventional Raman spectroscopy is highlighted, followed by an exploration of the molecular assembly of SERS nanotags. Significant progress in bioimaging is summarized, including in vitro studies on 2D/3D cell cultures, ex vivo tissue imaging, in vivo diagnostics, spectroscopic-guided surgery for tumor margin delineation, and liquid biopsy tools for detecting cancer and SARS-CoV-2. A particular focus is the integration of machine learning (ML) and deep learning algorithms to boost SERS nanotag efficacy in liquid biopsies. Finally, it addresses the challenges in the clinical translation of SERS nanotags and offers strategies to overcome these obstacles.
表面增强拉曼散射(SERS)是一种用于分子识别的变革性技术,具有卓越的灵敏度、信号特异性和抗光漂白能力,在疾病诊断、监测以及光谱引导手术中具有极高价值。与依赖微弱散射信号的传统拉曼光谱不同,SERS利用等离子体纳米颗粒放大拉曼信号,实现高灵敏度的分子检测。这一技术进步推动了具有出色多重检测能力的SERS纳米标签在生物传感应用中的发展。最近的进展扩大了SERS纳米标签在生物成像、治疗诊断学以及最近的液体活检中的应用。文中强调了SERS与传统拉曼光谱的区别,接着探讨了SERS纳米标签的分子组装。总结了生物成像方面的重大进展,包括对二维/三维细胞培养的体外研究、离体组织成像、体内诊断、用于肿瘤边缘划定的光谱引导手术以及用于检测癌症和SARS-CoV-2的液体活检工具。特别关注的是机器学习(ML)和深度学习算法的整合,以提高SERS纳米标签在液体活检中的效能。最后,阐述了SERS纳米标签临床转化中面临的挑战,并提供了克服这些障碍的策略。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025
ACS Appl Mater Interfaces. 2025-3-19
Cochrane Database Syst Rev. 2022-7-22
Cochrane Database Syst Rev. 2022-5-20
Spectrochim Acta A Mol Biomol Spectrosc. 2025-12-15
Cochrane Database Syst Rev. 2022-11-17