文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

表面增强拉曼散射纳米标签:设计策略、生物医学应用及机器学习集成

Surface-Enhanced Raman Scattering Nanotags: Design Strategies, Biomedical Applications, and Integration of Machine Learning.

作者信息

Vasquez Isabella, Xue Ruiyang, Srivastava Indrajit

机构信息

Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA.

Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, USA.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 May-Jun;17(3):e70015. doi: 10.1002/wnan.70015.


DOI:10.1002/wnan.70015
PMID:40391396
Abstract

Surface-enhanced Raman scattering (SERS) is a transformative technique for molecular identification, offering exceptional sensitivity, signal specificity, and resistance to photobleaching, making it invaluable for disease diagnosis, monitoring, and spectroscopy-guided surgeries. Unlike traditional Raman spectroscopy, which relies on weak scattering signals, SERS amplifies Raman signals using plasmonic nanoparticles, enabling highly sensitive molecular detection. This technological advancement has led to the development of SERS nanotags with remarkable multiplexing capabilities for biosensing applications. Recent progress has expanded the use of SERS nanotags in bioimaging, theranostics, and more recently, liquid biopsy. The distinction between SERS and conventional Raman spectroscopy is highlighted, followed by an exploration of the molecular assembly of SERS nanotags. Significant progress in bioimaging is summarized, including in vitro studies on 2D/3D cell cultures, ex vivo tissue imaging, in vivo diagnostics, spectroscopic-guided surgery for tumor margin delineation, and liquid biopsy tools for detecting cancer and SARS-CoV-2. A particular focus is the integration of machine learning (ML) and deep learning algorithms to boost SERS nanotag efficacy in liquid biopsies. Finally, it addresses the challenges in the clinical translation of SERS nanotags and offers strategies to overcome these obstacles.

摘要

表面增强拉曼散射(SERS)是一种用于分子识别的变革性技术,具有卓越的灵敏度、信号特异性和抗光漂白能力,在疾病诊断、监测以及光谱引导手术中具有极高价值。与依赖微弱散射信号的传统拉曼光谱不同,SERS利用等离子体纳米颗粒放大拉曼信号,实现高灵敏度的分子检测。这一技术进步推动了具有出色多重检测能力的SERS纳米标签在生物传感应用中的发展。最近的进展扩大了SERS纳米标签在生物成像、治疗诊断学以及最近的液体活检中的应用。文中强调了SERS与传统拉曼光谱的区别,接着探讨了SERS纳米标签的分子组装。总结了生物成像方面的重大进展,包括对二维/三维细胞培养的体外研究、离体组织成像、体内诊断、用于肿瘤边缘划定的光谱引导手术以及用于检测癌症和SARS-CoV-2的液体活检工具。特别关注的是机器学习(ML)和深度学习算法的整合,以提高SERS纳米标签在液体活检中的效能。最后,阐述了SERS纳米标签临床转化中面临的挑战,并提供了克服这些障碍的策略。

相似文献

[1]
Surface-Enhanced Raman Scattering Nanotags: Design Strategies, Biomedical Applications, and Integration of Machine Learning.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[2]
Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges.

ACS Appl Mater Interfaces. 2025-3-19

[3]
Machine learning-enhanced SERS diagnostics: Accelerating the AI-powered transition from laboratory discoveries to clinical practice.

Comput Biol Med. 2025-8

[4]
Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications.

J Adv Res. 2023-9

[5]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[6]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[7]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[8]
Micropore array-based SERS sensor assisted by convolutional neural networks for subsurface biotoxic-free detection of interstitial fluid in bioassays.

Spectrochim Acta A Mol Biomol Spectrosc. 2025-12-15

[9]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[10]
Ultra-thin CoAg-MOFNs for SERS for the rapid analysis of imidacloprid pesticide residues in citrus.

Anal Methods. 2025-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索