Guo Nini, Li Jie, Lian Huijie, Wang Shu, Sun Yi, Yao Xiaojing, Zhang Xiuyun
College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China.
College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China.
Nanoscale Horiz. 2025 Jun 23;10(7):1390-1397. doi: 10.1039/d5nh00215j.
Layertronics, engineering the electronic properties through the layer degree of freedom, has attracted considerable attention due to its promising applications in next-generation spintronic technologies. Here, by coupling sliding ferroelectricity with A-type antiferromagnetism, we demonstrate a mechanism for layer-polarization-engineered electronic property through symmetry analysis based on the tight-binding (TB) model. It is found that breaking the inversion symmetry and time-inversion symmetry in the model gives rise to ferroelectricity and a layer-polarized anomalous valley Hall effect. Crucially, this valley polarization is ferroelectrically switchable, enabling non-volatile electrical control of the layer-resolved Berry curvature. Using first-principles calculations, this mechanism and phenomenon are verified in the multiferroic bilayer Janus RuClF. Our findings provide a promising platform for 2D bilayer materials, which hold great potential for applications in nanoelectronic and spintronic devices.
层电子学通过层自由度来调控电子性质,因其在下一代自旋电子技术中的潜在应用而备受关注。在此,通过将滑动铁电性与A型反铁磁性相耦合,我们基于紧束缚(TB)模型,通过对称性分析展示了一种用于层极化工程电子性质的机制。研究发现,打破模型中的空间反演对称性和时间反演对称性会产生铁电性和层极化反常谷霍尔效应。至关重要的是,这种谷极化可通过铁电方式切换,从而实现对层分辨贝里曲率的非易失性电控制。利用第一性原理计算,在多铁性双层Janus RuClF中验证了这一机制和现象。我们的研究结果为二维双层材料提供了一个有前景的平台,这类材料在纳米电子和自旋电子器件中具有巨大的应用潜力。