Suppr超能文献

膀胱癌非侵入性肿瘤芽生评估及其与治疗反应的相关性:一项多中心队列研究

Non-Invasive Tumor Budding Evaluation and Correlation with Treatment Response in Bladder Cancer: A Multi-Center Cohort Study.

作者信息

Li Xiaoyang, Zou Chen, Wang Chunhui, Chang Cheng, Lin Yi, Liang Shuai, Zheng Haoran, Liu Libo, Deng Kai, Zhang Lin, Liu Bohao, Gao Mingchao, Cai Peicong, Lao Jianwen, Xu Longhao, Wu Daqin, Zhao Xiao, Wu Xiao, Li Xinyuan, Luo Yun, Zhong Wenlong, Lin Tianxin

机构信息

Department of Urology, Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, 600th Tianhe Road, Guangzhou, 510630, P. R. China.

Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Jun;12(22):e2416161. doi: 10.1002/advs.202416161. Epub 2025 May 20.

Abstract

The clinical benefits of neoadjuvant chemoimmunotherapy (NACI) are demonstrated in patients with bladder cancer (BCa); however, more than half fail to achieve a pathological complete response (pCR). This study utilizes multi-center cohorts of 2322 patients with pathologically diagnosed BCa, collected between January 1, 2014, and December 31, 2023, to explore the correlation between tumor budding (TB) status and NACI response and disease prognosis. A deep learning model is developed to noninvasively evaluate TB status based on CT images. The deep learning model accurately predicts the TB status, with area under the curve values of 0.932 (95% confidence interval: 0.898-0.965) in the training cohort, 0.944 (0.897-0.991) in the internal validation cohort, 0.882 (0.832-0.933) in external validation cohort 1, 0.944 (0.908-0.981) in the external validation cohort 2, and 0.854 (0.739-0.970) in the NACI validation cohort. Patients predicted to have a high TB status exhibit a worse prognosis (p < 0.05) and a lower pCR rate of 25.9% (7/20) than those predicted to have a low TB status (pCR rate: 73.9% [17/23]; p < 0.001). Hence, this model may be a reliable, noninvasive tool for predicting TB status, aiding clinicians in prognosis assessment and NACI strategy formulation.

摘要

新辅助化疗免疫疗法(NACI)对膀胱癌(BCa)患者的临床益处已得到证实;然而,超过一半的患者未能实现病理完全缓解(pCR)。本研究利用2014年1月1日至2023年12月31日期间收集的2322例经病理诊断的BCa患者的多中心队列,探讨肿瘤芽生(TB)状态与NACI反应及疾病预后之间的相关性。开发了一种深度学习模型,用于基于CT图像无创评估TB状态。该深度学习模型能够准确预测TB状态,在训练队列中的曲线下面积值为0.932(95%置信区间:0.898-0.965),在内部验证队列中为0.944(0.897-0.991),在外部验证队列1中为0.882(0.832-0.933),在外部验证队列2中为0.944(0.908-0.981),在NACI验证队列中为0.854(0.739-0.970)。预测TB状态高的患者预后较差(p < 0.05),pCR率为25.9%(7/20),低于预测TB状态低的患者(pCR率:73.9% [17/23];p < 0.001)。因此,该模型可能是一种可靠的无创预测TB状态的工具,有助于临床医生进行预后评估和制定NACI策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81d9/12165028/11133a29e20f/ADVS-12-2416161-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验