使用多通道条件一致性扩散模型的CT引导CBCT多器官分割在肺癌放疗中的应用

CT-guided CBCT multi-organ segmentation using a multi-channel conditional consistency diffusion model for lung cancer radiotherapy.

作者信息

Chen Xiaoqian, Qiu Richard L J, Pan Shaoyan, Shelton Joseph W, Yang Xiaofeng, Kesarwala Aparna H

机构信息

Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States of America.

出版信息

Biomed Phys Eng Express. 2025 Jun 20;11(4). doi: 10.1088/2057-1976/addac8.

Abstract

In cone beam computed tomography (CBCT)-guided adaptive radiotherapy, rapid and precise segmentation of organs-at-risk (OARs) is essential for accurate dose verification and online replanning. The quality of CBCT images obtained with current onboard CBCT imagers and clinical imaging protocols, however, is often compromised by artifacts such as scatter and motion, particularly for thoracic CBCT scans. These artifacts not only degrade image contrast but also obscure anatomical boundaries, making accurate segmentation on CBCT images significantly more challenging compared to planning CT images. To address these persistent challenges, we propose a novel multi-channel conditional consistency diffusion model (MCCDM) for segmentation of OARs in thoracic CBCT images (CBCT-MCCDM), which harnesses its domain transfer capabilities to improve segmentation accuracy across different imaging modalities. By jointly training the MCCDM with CT images and their corresponding masks, our framework enables an end-to-end mapping learning process that generates accurate segmentation of OARs. This CBCT-MCCDM was used to delineate esophagus, heart, left and right lungs, and spinal cord on CBCT images from patients receiving radiation therapy. We quantitatively evaluated our approach by comparing model-generated contours with ground truth contours from 33 patients with lung or metastatic cancers treated with 5-fraction stereotactic body radiation therapy (SBRT), demonstrating its potential to enhance segmentation accuracy despite the presence of challenging CBCT artifacts. The proposed method was evaluated using average Dice similarity coefficients (DSC), sensitivity, specificity, 95th Percentile Hausdorff Distance (HD95), and mean surface distance (MSD) for each of the five OARs. The method achieved average DSC values of 0.82, 0.88, 0.95, 0.96, and 0.96 for the esophagus, heart, left lung, right lung, and spinal cord, respectively. Sensitivity values were 0.813, 0.922, 0.956, 0.958, and 0.929, respectively, while specificity values were 0.991, 0.994, 0.996, 0.996, and 0.995, respectively. We compared the proposed method with two state-of-art methods, CBCT-only method and U-Net, and demonstrated that the proposed CBCT-MCCDM method achieved superior performance across all metrics.

摘要

在锥束计算机断层扫描(CBCT)引导的自适应放射治疗中,快速精确地分割危及器官(OARs)对于准确的剂量验证和在线重新计划至关重要。然而,使用当前的机载CBCT成像仪和临床成像协议获得的CBCT图像质量,常常受到散射和运动等伪影的影响,尤其是对于胸部CBCT扫描。这些伪影不仅会降低图像对比度,还会模糊解剖边界,使得在CBCT图像上进行准确分割比在计划CT图像上更具挑战性。为应对这些持续存在的挑战,我们提出了一种用于胸部CBCT图像(CBCT-MCCDM)中OARs分割的新型多通道条件一致性扩散模型(MCCDM),该模型利用其域转移能力来提高不同成像模态下的分割准确性。通过将MCCDM与CT图像及其相应的掩码联合训练,我们的框架实现了一个端到端的映射学习过程,可生成OARs的准确分割。该CBCT-MCCDM用于在接受放射治疗患者的CBCT图像上勾勒食管、心脏、左右肺和脊髓。我们通过将模型生成的轮廓与33例接受5分次立体定向体部放射治疗(SBRT)的肺癌或转移性癌症患者的真实轮廓进行比较,对我们的方法进行了定量评估,证明了其在存在具有挑战性的CBCT伪影情况下提高分割准确性的潜力。使用五个OARs各自的平均骰子相似系数(DSC)、灵敏度、特异性、第95百分位数豪斯多夫距离(HD95)和平均表面距离(MSD)对所提出的方法进行了评估。该方法在食管、心脏、左肺、右肺和脊髓上分别实现了0.82、0.88、0.95、0.96和0.96的平均DSC值。灵敏度值分别为0.813、0.922、0.956、0.958和0.929,而特异性值分别为0.991、0.994、0.996、0.996和0.995。我们将所提出的方法与两种先进方法,即仅使用CBCT的方法和U-Net进行了比较,证明所提出的CBCT-MCCDM方法在所有指标上均取得了卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索