Cole Rebecca H, Allichon Marie-Charlotte, Joffe Max E
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA.
J Neurosci. 2025 May 20. doi: 10.1523/JNEUROSCI.1963-24.2025.
Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of opioid receptors, positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how classical opioid receptor systems regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization of how the Mu opioid receptor (MOR), Delta opioid receptor (DOR), and Kappa opioid receptor (KOR) regulate inhibitory transmission in male and female mice. We show that across these receptor systems, DOR activation is more effective at suppressing spontaneous inhibitory transmission in layer 2/3 of the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release, and KOR plays a minor role in inhibitory transmission. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through simultaneous pre- and postsynaptic modifications to IN physiology, whereas MOR function varies between somato-dendritic or presynaptic signaling depending on cell type. The endogenous opioid system regulates behaviors that rely on prefrontal cortex (PFC) function. Previous studies have described opioid receptor expression within cortical GABAergic interneurons, but a detailed understanding of how the Mu (MOR), Delta (DOR), and Kappa opioid receptor (KOR) regulate different interneuron subtypes and microcircuits has not been reported. We use whole-cell patch-clamp electrophysiology, genetically engineered mice, and optogenetics to assess MOR, DOR, and KOR regulation of PFC inhibitory transmission, demonstrating that MOR and DOR inhibition of interneurons display qualitative and quantitative variation across GABAergic circuits within mouse prelimbic PFC.
皮质抑制性微回路中的异常信号已被确定为神经精神疾病的共同特征。中间神经元(IN)的活动受到神经调节系统的精确调控,这些系统会引起突触传递和主细胞输出的广泛变化。皮质中间神经元表达高水平的阿片受体,这使得阿片信号传导成为抑制性传递的关键调节因子。然而,我们对经典阿片受体系统如何调节前额叶皮质(PFC)微回路仍缺乏全面的了解。在这里,我们结合全细胞膜片钳电生理学、光遗传学和病毒工具,全面描述了μ阿片受体(MOR)、δ阿片受体(DOR)和κ阿片受体(KOR)如何调节雄性和雌性小鼠的抑制性传递。我们发现,在这些受体系统中,DOR激活在抑制前边缘PFC第2/3层的自发抑制性传递方面更有效,而MOR对电诱发的GABA释放有更大的急性抑制作用,KOR在抑制性传递中起次要作用。细胞类型特异性光遗传学显示,MOR和DOR对表达小白蛋白、生长抑素、胆囊收缩素和血管活性肠肽的中间神经元的抑制性传递有不同的调节作用。最后,我们证明DOR通过对中间神经元生理学的同时突触前和突触后修饰来调节抑制性传递,而MOR的功能根据细胞类型在体树突或突触前信号传导之间有所不同。内源性阿片系统调节依赖前额叶皮质(PFC)功能的行为。先前的研究描述了阿片受体在皮质GABA能中间神经元中的表达,但尚未报道对μ(MOR)、δ(DOR)和κ阿片受体(KOR)如何调节不同中间神经元亚型和微回路的详细了解。我们使用全细胞膜片钳电生理学、基因工程小鼠和光遗传学来评估MOR、DOR和KOR对PFC抑制性传递的调节,表明MOR和DOR对中间神经元的抑制在小鼠前边缘PFC内的GABA能回路中表现出定性和定量的差异。
Neuropsychopharmacology. 2024-11
Neuropharmacology. 2024-5-1