Rubenstein Aliza B, Smith Gregory R, Zhang Zidong, Chen Xi, Chambers Toby L, Ruf-Zamojski Frederique, Mendelev Natalia, Cheng Wan Sze, Zamojski Michel, Amper Mary Anne S, Nair Venugopalan D, Marderstein Andrew R, Montgomery Stephen B, Troyanskaya Olga G, Zaslavsky Elena, Trappe Todd, Trappe Scott, Sealfon Stuart C
Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York 10029, USA.
Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
Genome Res. 2025 Jul 1;35(7):1664-1677. doi: 10.1101/gr.280051.124.
Endurance exercise induces multisystem adaptations that improve performance and benefit health. Gene regulatory circuit responses within individual skeletal muscle cell types, which are key mediators of exercise effects, have not been studied. Here, we map transcriptome, chromatin, and regulatory circuit responses to acute endurance exercise in muscle using same-cell RNA-seq/ATAC-seq multiome assays. High-quality data were obtained from 37,154 nuclei comprising 14 cell types in vastus lateralis samples collected before and 3.5 h after either 40 min cycling exercise at 70% VOmax or 40 min supine rest. Both shared and cell-type-specific regulatory programs were identified. Differential gene expression and accessibility sites are largely distinct within nuclei for each cell type and muscle fiber, with the largest numbers of regulatory events observed in the three muscle fiber types (slow, fast, and intermediate) and lumican ()-expressing fibro-adipogenic progenitor cells. Single-cell regulatory circuit triad reconstruction (transcription factor, chromatin interaction site, regulated gene) also identifies largely distinct gene regulatory circuits modulated by exercise in the three muscle fiber types and -expressing fibro-adipogenic progenitor cells, involving a total of 328 transcription factors acting at chromatin sites regulating 2025 genes. This web-accessible single-cell data set and regulatory circuitry map serve as a resource for understanding the molecular underpinnings of the metabolic and physiological effects of exercise and for guiding interpretation of the exercise response literature in bulk tissue.
耐力运动可引发多系统适应性变化,从而提高运动表现并有益健康。单个骨骼肌细胞类型内的基因调控回路反应作为运动效果的关键介质,尚未得到研究。在此,我们使用同细胞RNA测序/转座酶可及染色质测序(ATAC-seq)多组学分析方法,绘制了肌肉对急性耐力运动的转录组、染色质和调控回路反应图谱。我们从外侧股四头肌样本中获取了高质量数据,这些样本来自于在以70%最大摄氧量(VOmax)进行40分钟骑行运动或40分钟仰卧休息之前及之后3.5小时采集的样本,共包含37,154个细胞核,分属14种细胞类型。我们识别出了共享的和细胞类型特异性的调控程序。对于每种细胞类型和肌纤维而言,细胞核内的差异基因表达和可及性位点在很大程度上是不同的,在三种肌纤维类型(慢肌、快肌和中间型肌纤维)以及表达富含亮氨酸蛋白聚糖(lumican)的成纤维脂肪祖细胞中观察到的调控事件数量最多。单细胞调控回路三联体重建(转录因子、染色质相互作用位点、受调控基因)还识别出在三种肌纤维类型和表达富含亮氨酸蛋白聚糖的成纤维脂肪祖细胞中,运动所调节的基因调控回路在很大程度上是不同的,涉及总共328个作用于染色质位点的转录因子,这些位点调控着2025个基因。这个可通过网络访问的单细胞数据集和调控电路图谱可作为一种资源,用于理解运动的代谢和生理效应的分子基础,并指导对大块组织中运动反应文献的解读。