Cheng Xiang, Huang Ziwei, Yu Yong, Bai Lu, Sun Mingran, Han Zengrui, Zhang Ruide, Li Sijiang
State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, 100871, China.
Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250100, China.
Sci Data. 2025 May 20;12(1):819. doi: 10.1038/s41597-025-05065-x.
Given the importance of datasets for sensing-communication integration research, a novel simulation platform for constructing communication and multi-modal sensory dataset is developed. The developed platform integrates three high-precision software, i.e., AirSim, WaveFarer, and Wireless InSite, and further achieves in-depth integration and precise alignment of them. Based on the developed platform, a new synthetic intelligent multi-modal sensing-communication dataset for Synesthesia of Machines (SoM), named SynthSoM, is proposed. The SynthSoM dataset contains various air-ground multi-link cooperative scenarios with comprehensive conditions, including multiple weather conditions, times of the day, intelligent agent densities, frequency bands, and antenna types. The SynthSoM dataset encompasses multiple data modalities, including radio-frequency (RF) channel large-scale and small-scale fading data, RF millimeter wave (mmWave) radar sensory data, and non-RF sensory data, e.g., RGB images, depth maps, and light detection and ranging (LiDAR) point clouds. The quality of SynthSoM dataset is validated via statistics-based qualitative inspection and evaluation metrics through machine learning (ML) via real-world measurements. The SynthSoM dataset is open-sourced and provides consistent data for cross-comparing SoM-related algorithms.
鉴于数据集对于传感-通信集成研究的重要性,开发了一种用于构建通信和多模态传感数据集的新型仿真平台。所开发的平台集成了三款高精度软件,即AirSim、WaveFarer和Wireless InSite,并进一步实现了它们之间的深度集成和精确对齐。基于所开发的平台,提出了一种用于机器通感(SoM)的新型合成智能多模态传感-通信数据集,名为SynthSoM。SynthSoM数据集包含各种具备综合条件的空地多链路协作场景,包括多种天气条件、一天中的不同时段、智能体密度、频段和天线类型。SynthSoM数据集涵盖多种数据模态,包括射频(RF)信道的大尺度和小尺度衰落数据、RF毫米波(mmWave)雷达传感数据以及非RF传感数据,例如RGB图像、深度图和光探测与测距(LiDAR)点云。通过基于统计的定性检查以及通过机器学习(ML)的实际测量的评估指标,对SynthSoM数据集的质量进行了验证。SynthSoM数据集已开源,并为SoM相关算法的交叉比较提供了一致的数据。