Wang Qixuan, Zhou Qian, Ma Zhengwu, Wang Nan, Zhang Tianyu, Fu Yaoyao, Li Jixing
Department of Facial Plastic and Reconstructive Surgery, Eye &ENT Hospital of Fudan University, Shanghai, China.
ENI Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.
Sci Data. 2025 May 20;12(1):829. doi: 10.1038/s41597-025-05158-7.
Prior neuroimaging datasets using naturalistic listening paradigms have predominantly focused on single-talker scenarios. While these studies have been invaluable for advancing our understanding of speech and language processing in the brain, they do not capture the complexities of real-world multi-talker environments. Here, we introduce the "Le Petit Prince (LPP) Multi-talker Dataset", a high-quality, naturalistic neuroimaging dataset featuring 40 minutes of electroencephalogram (EEG) and 7 T functional magnetic resonance imaging (fMRI) recordings from 26 native Mandarin Chinese speakers as they listened to both single-talker and multi-talker speech streams. Validation analyses conducted on both EEG and fMRI data demonstrate the dataset's high quality and robustness. Additionally, the dataset includes detailed transcriptions and prosodic and linguistic annotations of the speech stimuli, enabling fine-grained analyses of neural responses to specific linguistic and acoustic features. The LPP Multi-talker Dataset is well-suited for addressing a wide range of research questions in cognitive neuroscience, including selective attention, auditory stream segregation, and working memory processes in naturalistic listening contexts.
先前使用自然主义听觉范式的神经影像学数据集主要集中在单说话者场景。虽然这些研究对于推进我们对大脑中语音和语言处理的理解非常宝贵,但它们没有捕捉到现实世界中多说话者环境的复杂性。在这里,我们介绍“小王子(LPP)多说话者数据集”,这是一个高质量的自然主义神经影像学数据集,包含26名以汉语为母语者在听单说话者和多说话者语音流时40分钟的脑电图(EEG)和7T功能磁共振成像(fMRI)记录。对EEG和fMRI数据进行的验证分析证明了该数据集的高质量和稳健性。此外,该数据集包括语音刺激的详细转录以及韵律和语言注释,从而能够对针对特定语言和声学特征的神经反应进行细粒度分析。LPP多说话者数据集非常适合解决认知神经科学中的广泛研究问题,包括自然主义听觉环境中的选择性注意、听觉流分离和工作记忆过程。