Department of Psychology, Stanford University, Stanford, CA, USA.
Max Planck Institute for Empirical Aesthetics, Hesse, Germany.
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.
Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.
功能磁共振成像(fMRI)的预处理涉及许多步骤,以便在进行统计分析之前清理和标准化数据。通常,研究人员会为每个数据集创建特定的预处理工作流程,构建在大量可用工具的基础上。随着采集和处理技术的快速发展,这些工作流程的复杂性呈指数级增长。我们引入了 fMRIPrep,这是一种分析无关的工具,用于解决 fMRI 数据稳健且可重复预处理的挑战。fMRIPrep 自动适应最佳工作流程,以适应几乎任何数据集的特点,确保高质量的预处理,无需人工干预。通过在软件测试的迭代集成框架中引入视觉评估检查点,我们证明了 fMRIPrep 可以在多样化的 fMRI 数据集上稳健地生成高质量的结果。此外,fMRIPrep 引入的无控制空间平滑度比常用预处理工具观察到的要少。fMRIPrep 为神经科学家提供了一个易于使用和透明的预处理工作流程,这有助于确保推理的有效性和结果的可解释性。