Suppr超能文献

基于随机森林算法的中国人口-生态-能源-数字经济耦合协调主导因素研究

A study of dominant factors in the coupled coordination of population-ecology-energy-digital economy in China based on random forest algorithm.

作者信息

Zhong Qikang, Zhu Jiawei, Li Zhe

机构信息

School of Architecture and Art, Central South University, Changsha, 410083, China.

出版信息

Sci Rep. 2025 May 20;15(1):17420. doi: 10.1038/s41598-025-02551-5.

Abstract

This study aims to examine the spatiotemporal patterns and dominant influencing factors of the coupling coordinated development (CCD) among population, ecology, energy, and digital economy (PEED) systems in China, contributing to the broader goal of sustainable regional development. Using panel data from 31 Chinese provinces over the period 2011-2020, we construct a PEED coordination index and analyze its evolution through coupling coordination models, spatial autocorrelation (Moran's I), the Geodetector model, and a Random Forest algorithm with SHAP analysis. Results show a steady improvement in the overall CCD across provinces, although significant regional disparities persist-eastern provinces such as Guangdong and Beijing lead in coordination, while western and northeastern regions lag behind. Among the four subsystems, the ecological subsystem shows the greatest spatial variation, while the digital economy subsystem is more homogeneous. The Nighttime Light Index, Urbanization Rate, and Green Coverage Rate are identified as the most important drivers, with the Nighttime Light Index consistently exhibiting the strongest influence on CCD. SHAP analysis reveals nonlinear effects of all drivers, highlighting the complexity of subsystem interactions. The findings provide policy-relevant insights for promoting balanced and sustainable development. Policymakers should focus on enhancing urban planning, ecological protection, renewable energy adoption, and digital infrastructure investment, especially in less-developed regions, to further strengthen PEED coordination and support the achievement of Sustainable Development Goals (SDGs).

摘要

本研究旨在考察中国人口、生态、能源和数字经济(PEED)系统耦合协调发展(CCD)的时空格局及主要影响因素,为实现区域可持续发展这一更广泛目标做出贡献。利用2011 - 2020年期间中国31个省份的面板数据,我们构建了PEED协调指数,并通过耦合协调模型、空间自相关(莫兰指数I)、地理探测器模型以及带有SHAP分析的随机森林算法来分析其演变。结果表明,尽管省际间仍存在显著的区域差异——如广东和北京等东部省份在协调发展方面领先,而西部和东北地区则滞后,但各省的整体CCD状况仍在稳步改善。在四个子系统中,生态子系统的空间差异最大,而数字经济子系统则更为均匀。夜间灯光指数、城市化率和绿色覆盖率被确定为最重要的驱动因素,其中夜间灯光指数对CCD的影响始终最为显著。SHAP分析揭示了所有驱动因素的非线性效应,凸显了子系统相互作用的复杂性。研究结果为促进平衡和可持续发展提供了与政策相关的见解。政策制定者应专注于加强城市规划、生态保护、可再生能源利用以及数字基础设施投资,特别是在欠发达地区,以进一步加强PEED协调,并支持实现可持续发展目标(SDGs)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0894/12092613/41b3ff9261ba/41598_2025_2551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验