Suppr超能文献

一种使用无监督和自监督深度学习对光学相干断层扫描衍生的厚度图进行表型分析的人工智能方法。

An Artificial Intelligence Method for Phenotyping of OCT-Derived Thickness Maps Using Unsupervised and Self-supervised Deep Learning.

作者信息

Kazeminasab Saber, Sekimitsu Sayuri, Fazli Mojtaba, Eslami Mohammad, Shi Min, Tian Yu, Luo Yan, Wang Mengyu, Elze Tobias, Zebardast Nazlee

机构信息

Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Harvard University, Boston, MA, USA.

School of Medicine, Tufts University, Boston, MA, USA.

出版信息

J Imaging Inform Med. 2025 May 20. doi: 10.1007/s10278-025-01539-x.

Abstract

The objective of this study is to enhance the understanding of ophthalmic disease physiology and genetic architecture through the analysis of optical coherence tomography (OCT) images using artificial intelligence (AI). We introduce a novel AI methodology that addresses the challenge of transferring OCT phenotypes across datasets. The approach employs unsupervised and self-supervised learning techniques to phenotype and cluster OCT-derived retinal layer thicknesses, using glaucoma as a model disease. Our method integrates deep learning, manifold learning, and a Gaussian mixture model to identify distinct phenotypic clusters. Across two large datasets-Massachusetts Eye and Ear (MEE; 18,985 images) and UK Biobank (UKBB; 86,115 images)-the model identified 9 to 11 phenotypic clusters per retinal layer, which were clinically meaningful and showed consistent patterns across datasets. Pearson correlation analysis confirmed the intra-cluster similarity, with within-cluster correlations exceeding inter-cluster correlations (Supplemental Figs. 4-5). Clinical associations showed that specific phenotypes correlated strongly with glaucoma severity markers, including visual field mean deviation (e.g., 12.57±10.1 for phenotype 6) and cup-to-disc ratio (e.g., 0.694±0.237). These results validate the robustness of the model and its ability to generalize across datasets. This work advances OCT-based phenotyping, enabling phenotype transfer and facilitating translational research in disease mechanisms and genetic discovery.

摘要

本研究的目的是通过使用人工智能(AI)分析光学相干断层扫描(OCT)图像,增强对眼科疾病生理学和遗传结构的理解。我们引入了一种新颖的AI方法,以应对跨数据集转移OCT表型的挑战。该方法采用无监督和自监督学习技术,以青光眼作为模型疾病,对OCT衍生的视网膜层厚度进行表型分析和聚类。我们的方法整合了深度学习、流形学习和高斯混合模型,以识别不同的表型簇。在两个大型数据集——马萨诸塞州眼耳医院(MEE;18,985张图像)和英国生物银行(UKBB;86,115张图像)——中,该模型在每个视网膜层识别出9至11个表型簇,这些簇具有临床意义,并且在各数据集之间呈现出一致的模式。Pearson相关性分析证实了簇内相似性,簇内相关性超过了簇间相关性(补充图4-5)。临床关联表明,特定表型与青光眼严重程度标志物密切相关,包括视野平均偏差(例如,表型6为12.57±10.1)和杯盘比(例如,0.694±0.237)。这些结果验证了该模型的稳健性及其跨数据集泛化的能力。这项工作推进了基于OCT的表型分析,实现了表型转移,并促进了疾病机制和基因发现方面的转化研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验