Suppr超能文献

基于自动编码器的眼科图像表型分析突出了影响视网膜形态的基因位点,并提供了信息丰富的生物标志物。

Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers.

作者信息

Sergouniotis Panagiotis I, Diakite Adam, Gaurav Kumar, Birney Ewan, Fitzgerald Tomas

机构信息

European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, United Kingdom.

Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.

出版信息

Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae732.

Abstract

MOTIVATION

Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.

RESULTS

We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers.

AVAILABILITY AND IMPLEMENTATION

Code and data links available at https://github.com/tf2/autoencoder-oct.

摘要

动机

全基因组关联研究(GWAS)在识别基因变异与影像学衍生表型之间的关联方面取得了显著成功。迄今为止,这些分析的主要重点一直是既定的、临床使用的影像学特征。我们试图研究深度学习方法是否能够检测到更细微的图像变异性模式。

结果

我们使用自动编码器来表示来自31135名英国生物银行参与者的视网膜光学相干断层扫描(OCT)图像。对于每个受试者,我们获得了一个代表视网膜结构特征的64维向量。对这些自动编码器衍生的成像参数进行的GWAS确定了118个具有统计学意义的基因座;其中41个关联在一项重复研究中也具有显著性。这些基因座包含了先前与视网膜厚度测量、眼科疾病和/或神经退行性疾病相关的变异。值得注意的是,所生成的视网膜表型被发现有助于青光眼和心血管疾病的预测模型。总体而言,我们证明OCT图像的自监督表型分析提高了影响视网膜形态的遗传因素的可发现性,并提供了具有流行病学信息的生物标志物。

可用性和实现方式

代码和数据链接可在https://github.com/tf2/autoencoder-oct获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbbe/11751639/93f18aba61b8/btae732f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验