一种基于混合算法的心血管疾病心电图风险预测模型。

A hybrid algorithm-based ECG risk prediction model for cardiovascular disease.

作者信息

Zhou Pan, Yang Zhao, Hao Yiming, Fan Fangfang, Zhao Wenlang, Wang Ziyu, Deng Qiuju, Hao Yongchen, Yang Na, Han Lizhen, Jia Pingping, Qi Yue, Zhang Yan, Liu Jing

机构信息

Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.

出版信息

Eur Heart J Digit Health. 2025 Mar 19;6(3):466-475. doi: 10.1093/ehjdh/ztaf023. eCollection 2025 May.

Abstract

AIMS

Little is known about the role of electrocardiography (ECG) in the community population independent of physical and laboratory examinations. Thus, this study developed and validated several ECG-based models for cardiovascular disease (CVD) risk assessment, with or without simple questionnaire-based variables.

METHODS AND RESULTS

Using a derivation cohort of 3734 Chinese participants aged ≥40 years, we developed the ECG-based models to predict the risk of developing CVD (comprising fatal and non-fatal coronary heart disease, unstable angina, stroke, and heart failure). Candidate predictors associated with CVD were screened from hundreds of ECG characteristics using a hybrid algorithm. By incorporating the questionnaire-based predictors, we constructed the ECG-questionnaire model. All models were tested in an external validation cohort ( = 1224) to determine their discrimination and calibration. Over a maximum follow-up of 7 years, 433 CVD events occurred in the derivation cohort. The ECG model with 37 selected features achieved comparable performance concerning the clinical model using traditional cardiovascular risk factors (-statistic: 0.690, 95% confidence interval [CI]: 0.638-0.743) in the external validation cohort. Such performance significantly improved when the questionnaire-based predictors were added (-statistic: 0.734, 95% CI: 0.685-0.784; calibration χ: 3.334, = 0.950). Compared with the clinical model, 17.4% of the participants were correctly assigned to the corresponding risk groups, with an absolute integrated discrimination index of 0.048 (95% CI: 0.016-0.080).

CONCLUSION

The ECG model with/without questionnaire-based variables can accurately predict future CVD risk independent of physical and laboratory examinations, suggesting its great potential in routine clinical practice.

摘要

目的

关于心电图(ECG)在独立于体格检查和实验室检查的社区人群中的作用,人们了解甚少。因此,本研究开发并验证了几种基于心电图的心血管疾病(CVD)风险评估模型,这些模型纳入或未纳入基于简单问卷的变量。

方法与结果

我们使用一个由3734名年龄≥40岁的中国参与者组成的推导队列,开发了基于心电图的模型来预测发生CVD(包括致命和非致命性冠心病、不稳定型心绞痛、中风和心力衰竭)的风险。使用混合算法从数百种心电图特征中筛选出与CVD相关的候选预测因子。通过纳入基于问卷的预测因子,我们构建了心电图 - 问卷模型。所有模型均在一个外部验证队列(n = 1224)中进行测试,以确定它们的辨别力和校准情况。在最长7年的随访期内,推导队列中发生了433例CVD事件。在外部验证队列中,具有37个选定特征的心电图模型在使用传统心血管危险因素的临床模型方面表现相当(C统计量:0.690,95%置信区间[CI]:0.638 - 0.743)。当添加基于问卷的预测因子时,这种表现显著改善(C统计量:0.734,95%CI:0.685 - 0.784;校准χ²:3.334,P = 0.950)。与临床模型相比,17.4%的参与者被正确分配到相应的风险组,绝对综合辨别指数为0.048(95%CI:0.016 - 0.080)。

结论

包含或不包含基于问卷变量的心电图模型能够独立于体格检查和实验室检查准确预测未来CVD风险,表明其在常规临床实践中具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索