Suppr超能文献

健康检查数据的能量景观分析阐明了肥胖和非肥胖受试者患糖尿病的多种途径。

Energy landscape analysis of health checkup data clarified multiple pathways to diabetes development in obese and non-obese subjects.

作者信息

Ito Ryo, Oku Makito, Kimura Iwao, Haruki Takayuki, Shikata Masataka, Teramoto Tsuyoshi, Chujo Daisuke, Iwata Minoru, Fujisaka Shiho, Nagata Yoshiki, Yamagami Takashi, Kadowaki Makoto, Tobe Kazuyuki, Saito Shigeru, Ueda Keiichi

机构信息

Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.

Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan.

出版信息

Front Endocrinol (Lausanne). 2025 May 6;16:1576431. doi: 10.3389/fendo.2025.1576431. eCollection 2025.

Abstract

AIMS

To clarify the pathways from a healthy state to the diabetes onset via pre-disease states, we applied energy landscape analysis (ELA) to Specific Health Checkup data in Japan.

METHODS

This retrospective and observational cohort study analyzed data from 4,928 males aged 56.0 ± 3.2 years, including 242 individuals with diabetes, over a period of 5.26 ± 3.21 years. A total of 22,326 records were examined using six features: hemoglobin A1c, plasma glucose, high-density lipoprotein-cholesterol, body mass index (BMI), uric acid, and alanine aminotransferase. ELA was also applied to subdata from the 242 individuals with diabetes.

RESULTS

ELA revealed three stable states: healthy, intermediate, and unhealthy (pre-diabetes) states. The intermediate state was characterized by obesity. Obese individuals with BMI ≥ 25 kg/m (n = 1,460) preferred a pathway via the intermediate state, whereas non-obese individuals with BMI < 25 kg/m (n = 3,468) preferred to transit directly to the unhealthy state. There was a significant difference between the preferences of the two groups (p = 0.0085, chi-squared test). Two distinct pathways were also observed for obese and non-obese individuals with diabetes.

CONCLUSIONS

We demonstrated that ELA could indicate different pathways of diabetes development in obese and non-obese individuals in a data-driven manner. These insights could inform more targeted diabetes prevention measures, such as reducing visceral fat in obese individuals and protecting beta-cells in non-obese individuals.

摘要

目的

为了阐明从健康状态经由疾病前期状态发展为糖尿病的途径,我们对日本的特定健康检查数据应用了能量景观分析(ELA)。

方法

这项回顾性观察队列研究分析了4928名年龄在56.0±3.2岁的男性的数据,其中包括242名糖尿病患者,随访时间为5.26±3.21年。使用六个特征检查了总共22326条记录:糖化血红蛋白、血糖、高密度脂蛋白胆固醇、体重指数(BMI)、尿酸和丙氨酸转氨酶。ELA也应用于242名糖尿病患者的子数据。

结果

ELA揭示了三种稳定状态:健康、中间和不健康(糖尿病前期)状态。中间状态的特征是肥胖。BMI≥25kg/m的肥胖个体(n = 1460)倾向于经由中间状态的途径,而BMI<25kg/m的非肥胖个体(n = 3468)则倾向于直接转变为不健康状态。两组的偏好之间存在显著差异(p = 0.0085,卡方检验)。还观察到肥胖和非肥胖糖尿病个体有两种不同的途径。

结论

我们证明ELA可以以数据驱动的方式表明肥胖和非肥胖个体中糖尿病发展的不同途径。这些见解可以为更有针对性的糖尿病预防措施提供信息,例如减少肥胖个体的内脏脂肪和保护非肥胖个体的β细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61f4/12088973/71630b373795/fendo-16-1576431-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验