Boada Yadira, Flores Marcelo, Stiebritz Martin, Córdova Marco, Flores Francisco, Vignoni Alejandro
Synthetic Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
Grado en Ingeniería y Gestión Empresarial, Centro Universitario EDEM, Plaça de L'aigua, Poblados Marítimos, Valencia 46024, Spain.
Synth Biol (Oxf). 2025 Apr 29;10(1):ysaf006. doi: 10.1093/synbio/ysaf006. eCollection 2025.
Heparosan is a natural polymer with unique chemical and biological properties, that holds great promise for biomedical applications. The molecular weight (Mw) and polydispersion index (PDI) are critical factors influencing the performance of heparosan-based materials. Achieving precise control over the synthesis process to consistently produce heparosan with low Mw and low PDI can be challenging, as it requires tight regulation of reaction conditions, enzyme activity, and precursor concentrations. We propose a novel approach utilizing synthetic biology principles to precisely control heparosan biosynthesis in bacteria. Our strategy involves designing a biomolecular controller that can regulate the expression of genes involved in heparosan biosynthesis. This controller is activated by biosensors that detect heparosan precursors, allowing for fine-tuned control of the polymerization process. Through this approach, we foresee the implementation of this synthetic device, demonstrating the potential to produce low Mw and low PDI heparosan in the probiotic Nissle 1917 as a biosafe and biosecure biofactory. This study represents a significant advancement in the field of heparosan production, offering new opportunities for the development and manufacturing of biomaterials with tailored properties for diverse biomedical applications.
乙酰肝素是一种具有独特化学和生物学特性的天然聚合物,在生物医学应用方面具有巨大潜力。分子量(Mw)和多分散指数(PDI)是影响基于乙酰肝素的材料性能的关键因素。要实现对合成过程的精确控制,始终如一地生产出低Mw和低PDI的乙酰肝素具有挑战性,因为这需要严格调节反应条件、酶活性和前体浓度。我们提出了一种利用合成生物学原理在细菌中精确控制乙酰肝素生物合成的新方法。我们的策略包括设计一种生物分子控制器,该控制器可以调节参与乙酰肝素生物合成的基因的表达。该控制器由检测乙酰肝素前体的生物传感器激活,从而实现对聚合过程的微调控制。通过这种方法,我们预见到这种合成装置的应用,证明了在益生菌Nissle 1917中生产低Mw和低PDI乙酰肝素作为生物安全和生物安保生物工厂的潜力。这项研究代表了乙酰肝素生产领域的一项重大进展,为开发和制造具有定制特性的生物材料以用于各种生物医学应用提供了新机会。