Milner Prasaad T, Kim Dowan, Wilson Corey J
Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, United States.
Nucleic Acids Res. 2025 May 10;53(9). doi: 10.1093/nar/gkaf440.
The tenets of intelligent biological systems are (i) scalable decision-making, (ii) inheritable memory, and (iii) communication. This study aims to increase the complexity of decision-making operations beyond standard Boolean logic, while minimizing the metabolic burden imposed on the chassis cell. To this end, we present a new platform technology for constructing genetic circuits with multiple OUTPUT gene control using fewer INPUTs relative to conventional genetic circuits. Inspired by principles from quantum computing, we engineered synthetic bidirectional promoters, regulated by synthetic transcription factors, to construct 1-INPUT, 2-OUTPUT logical operations-i.e. biological QUBIT and PAULI-X logic gates-designed as compressed genetic circuits. We then layered said gates to engineer additional quantum-inspired logical operations of increasing complexity-e.g. FEYNMAN and TOFFOLI gates. In addition, we engineered a 2-INPUT, 4-OUTPUT quantum operation to showcase the capacity to utilize the entire permutation INPUT space. Finally, we developed a recombinase-based memory operation to remap the truth table between two disparate logic gates-i.e. converting a QUBIT operation to an antithetical PAULI-X operation in situ. This study introduces a novel and versatile synthetic biology toolkit, which expands the biocomputing capacity of Transcriptional Programming via the development of compressed and scalable multi-INPUT/OUTPUT logical operations.
(i)可扩展的决策制定,(ii)可遗传的记忆,以及(iii)通信。本研究旨在提高决策操作的复杂性,超越标准布尔逻辑,同时将施加在底盘细胞上的代谢负担降至最低。为此,我们提出了一种新的平台技术,用于构建具有多个输出基因控制的遗传电路,相对于传统遗传电路,该技术使用更少的输入。受量子计算原理的启发,我们设计了由合成转录因子调控的合成双向启动子,以构建1输入、2输出逻辑操作,即设计为压缩遗传电路的生物量子比特和泡利-X逻辑门。然后,我们将这些门进行分层,以设计出复杂度不断增加的其他受量子启发的逻辑操作,例如费曼门和托佛利门。此外,我们设计了一个2输入、4输出量子操作,以展示利用整个排列输入空间的能力。最后,我们开发了一种基于重组酶的记忆操作,用于在两个不同的逻辑门之间重新映射真值表,即在原位将量子比特操作转换为相反的泡利-X操作。本研究引入了一种新颖且通用的合成生物学工具包,通过开发压缩且可扩展的多输入/输出逻辑操作,扩展了转录编程的生物计算能力。