Zorger Ana-Mihaela, Hirsch Caroline, Baumann Mandy, Feldmann Merit, Bröckelmann Paul J, Mellinghoff Sibylle, Monsef Ina, Skoetz Nicole, Kreuzberger Nina
Cochrane Evidence Synthesis Unit Germany/UK, Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Cochrane Database Syst Rev. 2025 May 21;5(5):CD015530. doi: 10.1002/14651858.CD015530.pub2.
Vaccination aims to prevent infections. People who are immunocompromised, such as those with haematological malignancies, often experience higher immunosuppression, increasing their vulnerability to infections compared to individuals with solid tumours or healthy individuals.
The aim of this review is to summarise and evaluate the benefits and risks of vaccines for preventing infections in adults with haematological malignancies.
We conducted a comprehensive systematic search in CENTRAL, MEDLINE, Embase, LILACS, and Web of Science on 2 December 2024 for randomised controlled trials (RCTs) and for controlled non-randomised studies of interventions (NRSIs). We also searched ClinicalTrials.gov, WHO (World Health Organization) International Clinical Trials Registry Platform (ICTRP), and the Cochrane COVID-19 Study Register.
We included RCTs and controlled NRSIs evaluating the preventive effect of vaccines on outcomes prioritised by clinical experts, patients, and patient representatives. The prioritised outcomes for adults (≥ 18 years) with haematological malignancies (excluding those receiving cellular therapies) were infection incidence, all-cause mortality, quality of life, adverse events of any grade, serious adverse events, and adverse events of special interest. We looked for studies that evaluated a broad range of vaccine types (e.g. COVID-19, diphtheria, Haemophilus influenzae type b, hepatitis B, herpes zoster, influenza, Neisseria meningitidis, pertussis, polio, Streptococcus pneumoniae, or tetanus), but we excluded live-attenuated vaccines.
We followed current Cochrane methodological standards in the conduct of this review. We assessed the risk of bias using the Cochrane risk of bias 2 tool (RoB 2) for RCTs and Risk Of Bias In Non-randomised Studies - of Interventions (ROBINS-I) for controlled NRSIs.
We included six studies (four RCTs, two controlled NRSIs) with a total of 25,886 participants. We present the RCT results here and the NRSI findings from NRSIs in the full review. We judged one RCT on herpes zoster to be at low risk of bias overall, and we had 'some concerns' about bias in the other RCT on herpes zoster. We had 'some concerns' about bias in the RCTs on COVID-19 and influenza vaccines. Herpes zoster vaccines Two RCTs, involving 3067 participants with a range of haematological malignancies, evaluated vaccines for preventing herpes zoster compared to placebo or no vaccine. Vaccines may reduce herpes zoster incidence up to 21 months post-vaccination, although the 95% CI includes the possibility of no effect (4% versus 6%; RR 0.40, 95% CI 0.07 to 2.23; 2 RCTs, 3067 participants; low-certainty evidence). Vaccines probably have little to no effect on all-cause mortality up to 28 days post-vaccination (2.7% versus 2.6%; RR 1.03, 95% CI 0.65 to 1.64; 2548 participants; moderate-certainty evidence). Vaccines slightly increase any-grade adverse events within 30 days (RR 1.12, 95% CI 1.07 to 1.18; 3110 participants; high-certainty evidence), but probably do not increase serious adverse events within 12 months (23% versus 29%; RR 0.79, 95% CI 0.60 to 1.05; 562 participants; moderate-certainty evidence) after vaccination. Vaccines increase injection site adverse events substantially (40% versus 13%; RR 3.07, 95% CI 2.62 to 3.59; high-certainty evidence) and also increase systemic adverse events (10% versus 6%; RR 1.82, 95% CI 1.38 to 2.40; high-certainty evidence), as measured in 2548 participants within 28 days post-vaccination. Neither RCT reported quality of life. COVID-19 vaccines One RCT, involving 95 participants with lymphoma, leukaemia or myeloma, evaluated the BNT162b2 COVID-19 vaccine compared to placebo or no vaccine. Evidence about the effect of BNT162b2 vaccine on the incidence of COVID-19 up to six months after the second dose compared to placebo or no vaccine remains very uncertain (2.2% versus 2%; RR 1.11, 95% CI 0.07 to 17.25; 1 RCT, 95 participants; very low certainty evidence). Regarding safety data (mixed population including both solid tumours and haematological malignancies), BNT162b2 vaccine probably increases the number of participants with any grade adverse events (35% versus 17.5%; RR 1.99, 95% CI 1.71 to 2.30; 1 RCT, 2328 participants; moderate-certainty evidence) and there may be little to no difference concerning the number of participants experiencing serious adverse events (2.4% versus 1.7%; RR 1.43, 95% CI 0.80 to 2.54; 1 RCT, 2328 participants; low-certainty evidence). The RCT did not report all-cause mortality, quality of life, injection site adverse events or systemic adverse events. Influenza vaccines No RCTs evaluated an influenza vaccine versus placebo or no vaccine. One RCT, involving 122 participants with plasma cell disorders, evaluated different dosing regimens for an influenza vaccine on the incidence of influenza infection. Evidence is very uncertain regarding the effect of two doses of high-dose trivalent inactivated influenza vaccine compared to one dose (with strength based on age) of influenza vaccination on the incidence of infection within the 2015 to 2016 flu season (4% versus 8%; RR 0.49, 95% CI 0.11 to 2.08; very low-certainty evidence). The RCT did not report all-cause mortality, quality of life, any-grade or serious adverse events, or injection site or systemic adverse events.
AUTHORS' CONCLUSIONS: The evidence on vaccines for preventing infections in adults with haematological malignancies is limited and uncertain. Herpes zoster vaccines may reduce infection risk for up to 21 months, but the certainty of the evidence is low. While there is a considerable increase in short-term adverse events (high-certainty evidence), no increase in serious adverse events was observed at up to 12 months (moderate-certainty evidence). Data on long-term impacts on other outcomes are lacking. For COVID-19 and influenza vaccines, the evidence is very uncertain. We found no studies that could be included in the review of vaccines for our other infectious diseases of interest: diphtheria, Haemophilus influenzae type b (Hib), hepatitis B, Neisseria meningitidis, pertussis, polio, Streptococcus pneumoniae, or tetanus. Our review underscores the need for high-quality RCTs and controlled NRSIs with better reporting, larger samples, longer follow-ups, and a focus on patient-relevant outcomes, such as quality of life and long-term safety. A robust and continuously updated evidence base is essential to guide clinical and public health decisions.
疫苗接种旨在预防感染。免疫功能低下的人群,如血液系统恶性肿瘤患者,通常免疫抑制程度更高,与实体肿瘤患者或健康个体相比,他们更容易受到感染。
本综述的目的是总结和评估疫苗在预防血液系统恶性肿瘤成年患者感染方面的益处和风险。
我们于2024年12月2日在Cochrane系统评价数据库、医学索引数据库、荷兰医学文摘数据库、拉丁美洲和加勒比地区卫生科学数据库以及科学引文索引数据库中进行了全面的系统检索,以查找随机对照试验(RCT)和干预性非随机对照研究(NR-SI)。我们还检索了美国国立医学图书馆临床试验数据库、世界卫生组织国际临床试验注册平台以及Cochrane COVID-19研究注册库。
我们纳入了评估疫苗对临床专家、患者和患者代表确定的优先结局的预防效果的RCT和对照NR-SI。血液系统恶性肿瘤成年患者(≥18岁,不包括接受细胞治疗的患者)的优先结局包括感染发生率、全因死亡率、生活质量、任何级别的不良事件、严重不良事件以及特别关注的不良事件。我们寻找评估多种疫苗类型(如新冠病毒、白喉、b型流感嗜血杆菌、乙型肝炎、带状疱疹、流感、脑膜炎奈瑟菌、百日咳、脊髓灰质炎、肺炎链球菌或破伤风疫苗)的研究,但排除了减毒活疫苗。
我们在本综述的实施过程中遵循了当前Cochrane的方法学标准。我们使用Cochrane偏倚风险2工具(RoB 2)评估RCT的偏倚风险,并使用非随机干预性研究的偏倚风险工具(ROBINS-I)评估对照NR-SI的偏倚风险。
我们纳入了6项研究(4项RCT,2项对照NR-SI),共25886名参与者。我们在此呈现RCT结果,并在完整综述中呈现NR-SI的研究结果。我们判定一项关于带状疱疹疫苗的RCT总体偏倚风险较低,而对另一项关于带状疱疹疫苗的RCT的偏倚存在“一些担忧”。我们对新冠病毒和流感疫苗的RCT的偏倚存在“一些担忧”。带状疱疹疫苗两项RCT,涉及3067名患有多种血液系统恶性肿瘤的参与者,评估了与安慰剂或不接种疫苗相比预防带状疱疹的疫苗。疫苗接种后长达21个月可能会降低带状疱疹发病率,尽管95%置信区间包括无效果的可能性(4%对6%;RR 0.40,95%置信区间0.07至2.23;2项RCT,306 participants;低确定性证据)。疫苗接种后长达28天对全因死亡率可能几乎没有影响(2.7%对2.6%;RR 1.03,95%置信区间0.65至1.64;2548名参与者;中等确定性证据)。疫苗接种后30天内会轻微增加任何级别的不良事件(RR 1.12,95%置信区间1.07至1.18;3110名参与者;高确定性证据),但接种后12个月内可能不会增加严重不良事件(23%对29%;RR 0.79,95%置信区间0.60至1.05;562名参与者;中等确定性证据)。疫苗接种后28天内,2548名参与者中,疫苗会大幅增加注射部位不良事件(40%对13%;RR 3.07,95%置信区间2.62至3.59;高确定性证据),也会增加全身不良事件(10%对6%;RR 1.82,95%置信区间1.38至2.40;高确定性证据)。两项RCT均未报告生活质量。新冠病毒疫苗一项RCT,涉及95名淋巴瘤、白血病或骨髓瘤患者,评估了BNT162b2新冠病毒疫苗与安慰剂或不接种疫苗的效果。与安慰剂或不接种疫苗相比,关于BNT162b2疫苗在第二剂接种后长达六个月预防新冠病毒感染发生率的证据仍然非常不确定(2.2%对2%;RR 1.11,95%置信区间0.07至17.25;1项RCT,95名参与者;极低确定性证据)。关于安全性数据(包括实体肿瘤和血液系统恶性肿瘤的混合人群),BNT162b2疫苗可能会增加任何级别的不良事件参与者数量(35%对17.5%;RR 1.99,95%置信区间1.71至2.30;1项RCT,2328名参与者;中等确定性证据),而经历严重不良事件的参与者数量可能几乎没有差异(2.4%对1.7%;RR 1.43,95%置信区间0.80至2.54;1项RCT,2328名参与者;低确定性证据)。该RCT未报告全因死亡率、生活质量、注射部位不良事件或全身不良事件。流感疫苗没有RCT评估流感疫苗与安慰剂或不接种疫苗的效果。一项RCT,涉及122名浆细胞疾病患者,评估了不同剂量方案的流感疫苗对流感感染发生率的影响。关于2015至2016流感季节两剂高剂量三价灭活流感疫苗与一剂(根据年龄确定剂量)流感疫苗相比对感染发生率的影响,证据非常不确定(4%对8%;RR 0.49,95%置信区间从0.11至2.08;极低确定性证据)。该RCT未报告全因死亡率、生活质量、任何级别或严重不良事件,或注射部位或全身不良事件。
关于疫苗在预防血液系统恶性肿瘤成年患者感染方面的证据有限且不确定。带状疱疹疫苗可能在接种后长达21个月降低感染风险,但证据的确定性较低。虽然短期不良事件有显著增加(高确定性证据),但在长达12个月时未观察到严重不良事件增加(中等确定性证据)。缺乏关于对其他结局长期影响的数据。对于新冠病毒和流感疫苗,证据非常不确定。我们没有找到可纳入我们感兴趣的其他传染病(白喉、b型流感嗜血杆菌、乙型肝炎、脑膜炎奈瑟菌、百日咳、脊髓灰质炎、肺炎链球菌或破伤风)疫苗综述的研究。我们的综述强调需要高质量的RCT和对照NR-SI,报告更完善、样本量更大、随访时间更长,并关注与患者相关的结局,如生活质量和长期安全性。一个强大且不断更新的证据基础对于指导临床和公共卫生决策至关重要。