Suppr超能文献

用于自动检测和量化色素性视网膜炎患者光学相干断层扫描中黄斑囊样水肿的深度学习模型的验证

Validation of a deep learning model for the automated detection and quantification of cystoid macular oedema on optical coherence tomography in patients with retinitis pigmentosa.

作者信息

Almushattat Hind, Hensman Jonathan, El Allali Yasmine, de Vente Coen, Sánchez Clara I, Boon Camiel J F

机构信息

Department of Ophthalmology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.

Quantitative Healthcare Analysis (qurAI) Group, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Acta Ophthalmol. 2025 Nov;103(7):e524-e531. doi: 10.1111/aos.17518. Epub 2025 May 21.

Abstract

PURPOSE

Accurate assessment of cystoid macular oedema (CMO) in patients with retinitis pigmentosa (RP) on spectral-domain optical coherence tomography (SD-OCT) is crucial for tracking disease progression and may serve as a therapeutic endpoint. Manual CMO segmentation is labour-intensive and prone to variability, making artificial intelligence (AI) an appealing solution to improve accuracy and efficiency. This study aimed to validate a deep learning (DL) model for automated CMO detection and quantification on SD-OCT scans in patients with RP.

METHODS

A segmentation model based on the no-new-Unet (nnU-Net) architecture was trained on 112 OCT volumes from the RETOUCH dataset (70 for training, 42 for validation). The model was externally tested on 37 SD-OCT scans from RP patients, with annotations from three expert graders. Performance was assessed using the Dice similarity coefficient and intraclass correlation coefficient (ICC).

RESULTS

For randomly selected central B-scans, the model achieved a mean Dice score of 0.889 ± 0.002 standard deviation (SD), while observers scored 0.878 ± 0.007 SD. The ICC for the model was 0.945 ± 0.014 SD, compared to 0.979 ± 0.008 SD for observers. On manually chosen central B-scans, Dice scores were 0.936 ± 0.005 SD for the model and 0.946 ± 0.012 SD for observers, with ICC values of 0.964 ± 0.011 SD and 0.981 ± 0.011 SD, respectively.

CONCLUSIONS

This DL model reliably segments CMO in RP, achieving performance comparable to human graders. It can enhance the efficiency and precision of CMO quantification, reducing variability in clinical practice and trials.

摘要

目的

在患有色素性视网膜炎(RP)的患者中,利用光谱域光学相干断层扫描(SD-OCT)准确评估黄斑囊样水肿(CMO)对于追踪疾病进展至关重要,且可作为治疗终点。手动进行CMO分割劳动强度大且容易出现差异,这使得人工智能(AI)成为提高准确性和效率的有吸引力的解决方案。本研究旨在验证一种深度学习(DL)模型,用于在RP患者的SD-OCT扫描上自动检测和定量CMO。

方法

基于无新U-Net(nnU-Net)架构的分割模型在来自RETOUCH数据集的112个OCT容积上进行训练(70个用于训练,42个用于验证)。该模型在37例RP患者的SD-OCT扫描上进行外部测试,并由三位专家分级员进行标注。使用Dice相似系数和组内相关系数(ICC)评估性能。

结果

对于随机选择的中央B扫描,模型的平均Dice评分为0.889±0.002标准差(SD),而观察者的评分为0.878±0.007 SD。模型的ICC为0.945±0.014 SD,而观察者的ICC为0.979±0.008 SD。在手动选择的中央B扫描上,模型的Dice评分为0.936±0.005 SD,观察者的评分为0.946±0.012 SD,ICC值分别为0.964±0.011 SD和0.981±0.011 SD。

结论

该DL模型能够可靠地分割RP患者的CMO,其性能与人类分级员相当。它可以提高CMO定量的效率和精度,减少临床实践和试验中的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e4/12531602/eb86a254e2e1/AOS-103-e524-g001.jpg

相似文献

引用本文的文献

本文引用的文献

1
Syndromic retinitis pigmentosa.综合征性视网膜色素变性
Prog Retin Eye Res. 2024 Dec 27;107:101324. doi: 10.1016/j.preteyeres.2024.101324.
8
9
Non-syndromic retinitis pigmentosa.非综合征性视网膜色素变性。
Prog Retin Eye Res. 2018 Sep;66:157-186. doi: 10.1016/j.preteyeres.2018.03.005. Epub 2018 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验