丛枝菌根真菌的菌丝对豆科植物特异性招募根瘤菌。

Legume-specific recruitment of rhizobia by hyphae of arbuscular mycorrhizal fungi.

作者信息

He Jiadong, Van Dingenen Judith, Goormachtig Sofie, Calonne-Salmon Maryline, Declerck Stéphane

机构信息

Laboratory of Mycology, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgium.

Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.

出版信息

ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf100.

Abstract

The legume-rhizobia symbiosis possesses great potential for sustainable agriculture because of its ability to fix atmospheric nitrogen, reducing crop dependence on nitrogen fertilizers. Rhizobia recognize the host legume through flavonoids released by the roots. These signals are detected by bacteria typically over a few millimeters. Recent research has shown that arbuscular mycorrhizal fungi extend this recognition beyond 15 cm by transporting flavonoids along their hyphae. In soil, common mycorrhizal networks (CMNs) linking plants are formed by arbuscular mycorrhizal fungi. We hypothesized that such networks linking different legumes can transmit host-specific signals, guiding rhizobia to their appropriate hosts. Using in vitro and greenhouse microcosms, we linked Medicago truncatula and Glycine max via a CMN of Rhizophagus irregularis and inoculated GFP-labeled Sinorhizobium meliloti and mCherry-labeled Bradyrhizobium diazoefficiens on the hyphae. S. meliloti preferentially migrated towards M. truncatula, whereas B. diazoefficiens preferentially migrated towards G. max (155 ± 8 and 13 ± 3 nodules, respectively). This was confirmed in the greenhouse with a higher concentration of S. meliloti (2.1-2.5 × 105 CFU·g-1) near M. truncatula and a higher concentration of B. diazoefficiens (1.5-1.6 × 105 CFU·g-1) near G. max (71-82 and 15-18 nodules, respectively). Metabolomics revealed host-specific flavonoids in hyphal exudates: M. truncatula-connected hyphae released DL-liquiritigenin, naringenin, sakuranetin, and 3,7-dimethylquercetin, whereas G. max-connected hyphae released daidzin, 6"-O-malonyldaidzin, irilone, and erylatissin A. These findings establish that common mycorrhizal networks constitute a "navigation system", using chemical signals to orient rhizobia towards their specific hosts, thereby improving nodulation with potential applications in agriculture.

摘要

豆科植物与根瘤菌的共生关系在可持续农业中具有巨大潜力,因为它能够固定大气中的氮,减少作物对氮肥的依赖。根瘤菌通过根系释放的类黄酮识别宿主豆科植物。这些信号通常在几毫米的范围内被细菌检测到。最近的研究表明,丛枝菌根真菌通过沿着其菌丝运输类黄酮,将这种识别范围扩展到15厘米以上。在土壤中,丛枝菌根真菌形成连接植物的共同菌根网络(CMN)。我们假设,这种连接不同豆科植物的网络可以传递宿主特异性信号,引导根瘤菌找到合适的宿主。利用体外和温室微观系统,我们通过不规则球囊霉的CMN将蒺藜苜蓿和大豆连接起来,并在菌丝上接种了绿色荧光蛋白标记的苜蓿中华根瘤菌和mCherry标记的慢生根瘤菌。苜蓿中华根瘤菌优先向蒺藜苜蓿迁移,而慢生根瘤菌优先向大豆迁移(分别为155±8个和13±3个根瘤)。在温室中得到了证实,在蒺藜苜蓿附近苜蓿中华根瘤菌浓度较高(2.1-2.5×105 CFU·g-1),在大豆附近慢生根瘤菌浓度较高(1.5-1.6×105 CFU·g-1)(分别为71-82个和15-18个根瘤)。代谢组学揭示了菌丝分泌物中宿主特异性的类黄酮:与蒺藜苜蓿相连的菌丝释放出DL-甘草素、柚皮素、樱花素和3,7-二甲基槲皮素,而与大豆相连的菌丝释放出大豆苷、6”-O-丙二酰大豆苷、鸢尾酮和erylatissin A。这些发现表明,共同菌根网络构成了一个“导航系统”,利用化学信号引导根瘤菌找到其特定宿主,从而改善结瘤情况,在农业中具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd1c/12145873/7bb686622fa4/wraf100f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索