Zavala-Méndez Marcela, Sánchez-Pájaro Andrés, Schilmann Astrid, Calábria de Araújo Juliana, Buitrón Germán, Carrillo-Reyes Julián
Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México.
Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico.
Water Environ Res. 2025 May;97(5):e70095. doi: 10.1002/wer.70095.
Wastewater-based surveillance (WBS) is valuable method for monitoring the dispersion of pathogens at a low cost. However, their impact on public health decision-making is limited because there is a lack of long-term analyses, especially in low- and middle-income countries. This study aimed to assess the effectiveness of using WBS to predict the occurrence of COVID-19 waves and estimate the prevalence of infection, emphasizing the impact of SARS-CoV-2 variants. During 17 months of influent monitoring of two wastewater treatment plants in Queretaro City, Mexico, wave prediction time was influenced by variant dispersion. Waves dominated by the Delta and Omicron variants circulation showed lead days values from 5 to 14 and 1 to 4 days, respectively. According to the Monte Carlo model, disease prevalence prediction by WBS aligned with clinically reported cases at wave onsets, but the variant's transmissibility explained the overestimation during peaks. This work provides new insights into the potential and limitations of using WBS as an epidemiological tool for detecting pathogens and predicting their occurrence. PRACTITIONER POINTS: Long-term wastewater monitoring allowed early prediction of COVID-19 case waves. The prediction capability is related to the variant presence and their infectivity. The prevalence estimated by wastewater surveillance was higher in all case waves. The prevalence estimation has limitations regarding variations in data input.
基于废水的监测(WBS)是一种低成本监测病原体传播的有效方法。然而,由于缺乏长期分析,尤其是在低收入和中等收入国家,其对公共卫生决策的影响有限。本研究旨在评估使用WBS预测新冠疫情波发生情况和估计感染流行率的有效性,重点关注新冠病毒变异株的影响。在对墨西哥克雷塔罗市两家污水处理厂进行为期17个月的进水监测期间,疫情波预测时间受变异株传播的影响。由德尔塔和奥密克戎变异株传播主导的疫情波的提前天数分别为5至14天和1至4天。根据蒙特卡洛模型,WBS对疾病流行率的预测与疫情波开始时临床报告的病例数相符,但变异株的传播性解释了高峰期的高估情况。这项工作为使用WBS作为检测病原体和预测其发生的流行病学工具的潜力和局限性提供了新的见解。从业者要点:长期的废水监测能够对新冠病例波进行早期预测。预测能力与变异株的存在及其传染性有关。在所有病例波中,通过废水监测估计的流行率都更高。流行率估计在数据输入变化方面存在局限性。